adriansanz's picture
Add new SentenceTransformer model.
2e32446 verified
metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:9593
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Aquestes parades estaran ocupades per empreses del sector, entitats
      socials i culturals i centres escolars amb seu a Sitges, o empreses del
      sector amb activitat a Sitges, que prèviament han fet la sol·licitud,
      se'ls ha autoritzat i, si escau, han abonat la taxa corresponent.
    sentences:
      - >-
        Quin és el paper de les petites empreses i persones autònomes en aquests
        ajuts?
      - Quin és el tràmit que permet sol·licitar una nova placa de gual?
      - >-
        Quin és el requisit per a l'ocupació de les parades de la Fira de Sant
        Jordi?
  - source_sentence: >-
      L'Ajuntament de Sitges atorga subvencions pels projectes educatius que
      realitzen les escoles de Sitges que tinguin com a finalitat augmentar la
      qualitat educativa dels infants d'infantil i primària al llarg de
      l’exercici pel qual es sol·licita la subvenció.
    sentences:
      - Quin és el paper de la targeta 'smart Sitges' en la gestió de residus?
      - >-
        Quin és el requisit per rebre ajuts econòmics per la meva empresa en
        dificultats econòmiques?
      - Quin és el resultat esperat de les subvencions per a les escoles?
  - source_sentence: >-
      ocupades per empreses del sector i entitats culturals, amb activitat
      editorial acreditada
    sentences:
      - >-
        Quin és el percentatge de bonificació per als carrers i locals afectats
        indirectament?
      - >-
        Quin és el propòsit de presentar documents en un procés de selecció de
        personal de l'Ajuntament de Sitges?
      - >-
        Quin és el lloc on es troben les empreses del sector que participen en
        la Fira de la Vila del Llibre de Sitges?
  - source_sentence: >-
      Aquest tràmit permet a les persones interessades la presentació
      d'al·legacions i/o la interposició de recursos contra actes administratius
      dictats per l'Ajuntament de Sitges.
    sentences:
      - >-
        Quin és el tràmit per presentar una al·legació contra una decisió de
        l'Ajuntament de Sitges?
      - Quin és el benefici de la llicència per a obres a la via pública
      - Com puc promoure l'esport a la ciutat?
  - source_sentence: >-
      Per valorar l’interès de la proposta es tindrà en compte: Tipus
      d’activitat Antecedents Dates de celebració Accions de promoció dutes a
      terme des de l’organització Nivell de molèstia previst i interferència en
      la vida quotidiana.
    sentences:
      - >-
        Quin és el benefici de la realització d'exposicions al Centre Cultural
        Miramar?
      - >-
        Quin és el paper de les accions de promoció en les subvencions per a
        projectes i activitats de l'àmbit turístic?
      - Quins són els productes que es venen al Mercat setmanal dels dijous?
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.05909943714821764
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.1275797373358349
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.17354596622889307
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.2861163227016886
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05909943714821764
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.04252657911194496
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03470919324577861
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.028611632270168854
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05909943714821764
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1275797373358349
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.17354596622889307
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2861163227016886
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.1537318058278305
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.11394435510289168
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1397865116884934
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.05909943714821764
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12570356472795496
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.1801125703564728
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.2945590994371482
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05909943714821764
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.04190118824265165
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.036022514071294566
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.02945590994371482
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05909943714821764
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12570356472795496
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1801125703564728
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2945590994371482
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.15635010592942117
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1149472140325799
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.14049204491324296
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.05909943714821764
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12570356472795496
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.17073170731707318
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.29831144465290804
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05909943714821764
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.04190118824265165
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03414634146341463
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.029831144465290803
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05909943714821764
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12570356472795496
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.17073170731707318
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.29831144465290804
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.1571277123670345
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1149557759313857
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1397328880376811
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.051594746716697934
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12101313320825516
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.16791744840525327
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.28893058161350843
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.051594746716697934
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.040337711069418386
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03358348968105066
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.028893058161350845
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.051594746716697934
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12101313320825516
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.16791744840525327
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.28893058161350843
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.14978486884903933
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1081955984395009
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.13375931969408872
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.051594746716697934
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.11726078799249531
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.17166979362101314
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.28893058161350843
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.051594746716697934
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.039086929330831764
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.034333958724202626
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.028893058161350845
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.051594746716697934
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.11726078799249531
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.17166979362101314
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.28893058161350843
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.14877654954358344
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1068536138658091
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.13283061923015374
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.05065666041275797
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.1125703564727955
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.16416510318949343
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.28236397748592873
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05065666041275797
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.0375234521575985
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.03283302063789869
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.02823639774859287
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05065666041275797
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1125703564727955
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.16416510318949343
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.28236397748592873
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.14493487779487546
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.10395931981297837
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1306497575595095
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitgrsBAAIbge-m3-300824")
# Run inference
sentences = [
    'Per valorar l’interès de la proposta es tindrà en compte: Tipus d’activitat Antecedents Dates de celebració Accions de promoció dutes a terme des de l’organització Nivell de molèstia previst i interferència en la vida quotidiana.',
    "Quin és el paper de les accions de promoció en les subvencions per a projectes i activitats de l'àmbit turístic?",
    "Quin és el benefici de la realització d'exposicions al Centre Cultural Miramar?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0591
cosine_accuracy@3 0.1276
cosine_accuracy@5 0.1735
cosine_accuracy@10 0.2861
cosine_precision@1 0.0591
cosine_precision@3 0.0425
cosine_precision@5 0.0347
cosine_precision@10 0.0286
cosine_recall@1 0.0591
cosine_recall@3 0.1276
cosine_recall@5 0.1735
cosine_recall@10 0.2861
cosine_ndcg@10 0.1537
cosine_mrr@10 0.1139
cosine_map@100 0.1398

Information Retrieval

Metric Value
cosine_accuracy@1 0.0591
cosine_accuracy@3 0.1257
cosine_accuracy@5 0.1801
cosine_accuracy@10 0.2946
cosine_precision@1 0.0591
cosine_precision@3 0.0419
cosine_precision@5 0.036
cosine_precision@10 0.0295
cosine_recall@1 0.0591
cosine_recall@3 0.1257
cosine_recall@5 0.1801
cosine_recall@10 0.2946
cosine_ndcg@10 0.1564
cosine_mrr@10 0.1149
cosine_map@100 0.1405

Information Retrieval

Metric Value
cosine_accuracy@1 0.0591
cosine_accuracy@3 0.1257
cosine_accuracy@5 0.1707
cosine_accuracy@10 0.2983
cosine_precision@1 0.0591
cosine_precision@3 0.0419
cosine_precision@5 0.0341
cosine_precision@10 0.0298
cosine_recall@1 0.0591
cosine_recall@3 0.1257
cosine_recall@5 0.1707
cosine_recall@10 0.2983
cosine_ndcg@10 0.1571
cosine_mrr@10 0.115
cosine_map@100 0.1397

Information Retrieval

Metric Value
cosine_accuracy@1 0.0516
cosine_accuracy@3 0.121
cosine_accuracy@5 0.1679
cosine_accuracy@10 0.2889
cosine_precision@1 0.0516
cosine_precision@3 0.0403
cosine_precision@5 0.0336
cosine_precision@10 0.0289
cosine_recall@1 0.0516
cosine_recall@3 0.121
cosine_recall@5 0.1679
cosine_recall@10 0.2889
cosine_ndcg@10 0.1498
cosine_mrr@10 0.1082
cosine_map@100 0.1338

Information Retrieval

Metric Value
cosine_accuracy@1 0.0516
cosine_accuracy@3 0.1173
cosine_accuracy@5 0.1717
cosine_accuracy@10 0.2889
cosine_precision@1 0.0516
cosine_precision@3 0.0391
cosine_precision@5 0.0343
cosine_precision@10 0.0289
cosine_recall@1 0.0516
cosine_recall@3 0.1173
cosine_recall@5 0.1717
cosine_recall@10 0.2889
cosine_ndcg@10 0.1488
cosine_mrr@10 0.1069
cosine_map@100 0.1328

Information Retrieval

Metric Value
cosine_accuracy@1 0.0507
cosine_accuracy@3 0.1126
cosine_accuracy@5 0.1642
cosine_accuracy@10 0.2824
cosine_precision@1 0.0507
cosine_precision@3 0.0375
cosine_precision@5 0.0328
cosine_precision@10 0.0282
cosine_recall@1 0.0507
cosine_recall@3 0.1126
cosine_recall@5 0.1642
cosine_recall@10 0.2824
cosine_ndcg@10 0.1449
cosine_mrr@10 0.104
cosine_map@100 0.1306

Training Details

Training Dataset

Unnamed Dataset

  • Size: 9,593 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 5 tokens
    • mean: 49.28 tokens
    • max: 178 tokens
    • min: 10 tokens
    • mean: 21.16 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament l’inici o modificació substancial d’una activitat econòmica, i hi adjunta el certificat tècnic acreditatiu del compliment dels requisits necessaris que estableix la normativa vigent per a l‘exercici de l’activitat. Quin és el resultat esperat després de presentar el certificat tècnic en el tràmit de comunicació d'inici d'activitat?
    L'Ajuntament de Sitges ofereix a aquelles famílies que acompleixin els requisits establerts, ajuts per al pagament de la quota del servei i de la quota del menjador dels infants matriculats a les Llars d'Infants Municipals ( 0-3 anys). Quins són els requisits per a beneficiar-se dels ajuts de l'Ajuntament de Sitges?
    Les entitats o associacions culturals han de presentar la sol·licitud de subvenció dins del termini establert per l'Ajuntament de Sitges. Quin és el termini per a presentar una sol·licitud de subvenció per a un projecte cultural?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.2667 10 3.5318 - - - - - -
0.5333 20 2.3744 - - - - - -
0.8 30 1.6587 - - - - - -
0.9867 37 - 0.1350 0.1317 0.1349 0.1341 0.1207 0.1322
1.0667 40 1.1513 - - - - - -
1.3333 50 1.0055 - - - - - -
1.6 60 0.7369 - - - - - -
1.8667 70 0.4855 - - - - - -
2.0 75 - 0.1366 0.1370 0.1376 0.1345 0.1290 0.1355
2.1333 80 0.4362 - - - - - -
2.4 90 0.3943 - - - - - -
2.6667 100 0.3495 - - - - - -
2.9333 110 0.2138 - - - - - -
2.9867 112 - 0.1364 0.1342 0.1374 0.1361 0.1256 0.1367
3.2 120 0.2176 - - - - - -
3.4667 130 0.2513 - - - - - -
3.7333 140 0.2163 - - - - - -
4.0 150 0.15 0.1401 0.1308 0.1332 0.1396 0.1279 0.1396
4.2667 160 0.1613 - - - - - -
4.5333 170 0.1955 - - - - - -
4.8 180 0.1514 - - - - - -
4.9333 185 - 0.1398 0.1328 0.1338 0.1397 0.1306 0.1405
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.0.dev0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}