metadata
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2372
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Heu de veure si és necessari un estudi d'aïllament acústic i quin nivell
d'aïllament acústic precisa l'activitat.
sentences:
- >-
Quin és el paper de les persones que resideixen amb el titular del dret
d'habitatge en la política d'habitatge?
- Quin és el límit de superfície per a les carpes informatives?
- Quin és l'objectiu de l'estudi d'aïllament acústic?
- source_sentence: >-
Si us voleu matricular al proper curs 2022-2023 d'arts plàstiques ho podeu
fer a partir del 1 de juliol a les 16h, seleccionant una d'aquestes
opcions:
sentences:
- Quin és el període de matrícula per al curs 2022-2023 d'arts plàstiques?
- Quan no cal presentar al·legacions en un expedient de baixa d'ofici?
- >-
Quin és l'objectiu de les al·legacions respecte a un expedient
sancionador de l'Ordenança Municipal de Civisme i Convivència Ciutadana?
- source_sentence: Annexes Econòmics (Cooperació)
sentences:
- >-
Qui és el responsable de l'elaboració de l'informe d'adequació de
l'habitatge?
- >-
Què han de fer les persones interessades durant el tràmit d'audiència en
el procés d'inclusió al registre municipal d'immobles desocupats?
- Quin és l'àmbit de la cooperació econòmica?
- source_sentence: >-
En virtut del conveni de col.laboració amb l'Atrium de Viladecans, tots
els ciutadans que acreditin la seva residència a Viladecans es podran
beneficiar d'un 20% de descompte en la programació de teatre, música i
dansa, objecte del conveni.
sentences:
- Quin és el resultat de consultar un expedient d'activitats?
- Quin és el format de resposta d'aquesta sol·licitud?
- >-
Quin és el descompte que s'aplica en la programació de teatre, música i
dansa per als ciutadans de Viladecans?
- source_sentence: Descripció. Retorna en format JSON adequat
sentences:
- Quin és el contingut de l'annex específic?
- Quin tipus d'ocupació es refereix a la renúncia de la llicència?
- Què passa amb l'habitatge?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.33220910623946037
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5902192242833052
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6998313659359191
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8094435075885329
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.33220910623946037
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1967397414277684
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1399662731871838
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08094435075885327
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.33220910623946037
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5902192242833052
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6998313659359191
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8094435075885329
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5625986746470664
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4843170320404718
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49243646079034575
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.3406408094435076
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5767284991568297
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6981450252951096
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8161888701517707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3406408094435076
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19224283305227655
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1396290050590219
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08161888701517706
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3406408094435076
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5767284991568297
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6981450252951096
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8161888701517707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5661348054508011
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4872065633448428
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49520736709122076
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.3305227655986509
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5801011804384486
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6947723440134908
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8161888701517707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3305227655986509
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19336706014614952
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13895446880269813
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08161888701517707
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3305227655986509
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5801011804384486
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6947723440134908
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8161888701517707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5629643418278626
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4829913809256133
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49079988310494693
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3288364249578415
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5885328836424958
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7015177065767285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8094435075885329
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3288364249578415
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1961776278808319
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14030354131534567
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08094435075885327
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3288364249578415
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5885328836424958
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7015177065767285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8094435075885329
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5625842077927447
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.48416981182579805
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49201787335851555
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3473861720067454
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.581787521079258
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6998313659359191
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.806070826306914
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3473861720067454
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19392917369308602
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1399662731871838
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0806070826306914
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3473861720067454
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.581787521079258
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6998313659359191
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.806070826306914
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.565365572327355
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4893626703070211
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49726527073459287
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.2917369308600337
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5682967959527825
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6644182124789207
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7875210792580101
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2917369308600337
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18943226531759413
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13288364249578413
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07875210792580102
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2917369308600337
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5682967959527825
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6644182124789207
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7875210792580101
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5320349463938843
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.45117106988945077
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45948574441166834
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/ST-tramits-SB-001-5ep")
sentences = [
'Descripció. Retorna en format JSON adequat',
"Quin és el contingut de l'annex específic?",
"Què passa amb l'habitatge?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3322 |
cosine_accuracy@3 |
0.5902 |
cosine_accuracy@5 |
0.6998 |
cosine_accuracy@10 |
0.8094 |
cosine_precision@1 |
0.3322 |
cosine_precision@3 |
0.1967 |
cosine_precision@5 |
0.14 |
cosine_precision@10 |
0.0809 |
cosine_recall@1 |
0.3322 |
cosine_recall@3 |
0.5902 |
cosine_recall@5 |
0.6998 |
cosine_recall@10 |
0.8094 |
cosine_ndcg@10 |
0.5626 |
cosine_mrr@10 |
0.4843 |
cosine_map@100 |
0.4924 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3406 |
cosine_accuracy@3 |
0.5767 |
cosine_accuracy@5 |
0.6981 |
cosine_accuracy@10 |
0.8162 |
cosine_precision@1 |
0.3406 |
cosine_precision@3 |
0.1922 |
cosine_precision@5 |
0.1396 |
cosine_precision@10 |
0.0816 |
cosine_recall@1 |
0.3406 |
cosine_recall@3 |
0.5767 |
cosine_recall@5 |
0.6981 |
cosine_recall@10 |
0.8162 |
cosine_ndcg@10 |
0.5661 |
cosine_mrr@10 |
0.4872 |
cosine_map@100 |
0.4952 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3305 |
cosine_accuracy@3 |
0.5801 |
cosine_accuracy@5 |
0.6948 |
cosine_accuracy@10 |
0.8162 |
cosine_precision@1 |
0.3305 |
cosine_precision@3 |
0.1934 |
cosine_precision@5 |
0.139 |
cosine_precision@10 |
0.0816 |
cosine_recall@1 |
0.3305 |
cosine_recall@3 |
0.5801 |
cosine_recall@5 |
0.6948 |
cosine_recall@10 |
0.8162 |
cosine_ndcg@10 |
0.563 |
cosine_mrr@10 |
0.483 |
cosine_map@100 |
0.4908 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3288 |
cosine_accuracy@3 |
0.5885 |
cosine_accuracy@5 |
0.7015 |
cosine_accuracy@10 |
0.8094 |
cosine_precision@1 |
0.3288 |
cosine_precision@3 |
0.1962 |
cosine_precision@5 |
0.1403 |
cosine_precision@10 |
0.0809 |
cosine_recall@1 |
0.3288 |
cosine_recall@3 |
0.5885 |
cosine_recall@5 |
0.7015 |
cosine_recall@10 |
0.8094 |
cosine_ndcg@10 |
0.5626 |
cosine_mrr@10 |
0.4842 |
cosine_map@100 |
0.492 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3474 |
cosine_accuracy@3 |
0.5818 |
cosine_accuracy@5 |
0.6998 |
cosine_accuracy@10 |
0.8061 |
cosine_precision@1 |
0.3474 |
cosine_precision@3 |
0.1939 |
cosine_precision@5 |
0.14 |
cosine_precision@10 |
0.0806 |
cosine_recall@1 |
0.3474 |
cosine_recall@3 |
0.5818 |
cosine_recall@5 |
0.6998 |
cosine_recall@10 |
0.8061 |
cosine_ndcg@10 |
0.5654 |
cosine_mrr@10 |
0.4894 |
cosine_map@100 |
0.4973 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2917 |
cosine_accuracy@3 |
0.5683 |
cosine_accuracy@5 |
0.6644 |
cosine_accuracy@10 |
0.7875 |
cosine_precision@1 |
0.2917 |
cosine_precision@3 |
0.1894 |
cosine_precision@5 |
0.1329 |
cosine_precision@10 |
0.0788 |
cosine_recall@1 |
0.2917 |
cosine_recall@3 |
0.5683 |
cosine_recall@5 |
0.6644 |
cosine_recall@10 |
0.7875 |
cosine_ndcg@10 |
0.532 |
cosine_mrr@10 |
0.4512 |
cosine_map@100 |
0.4595 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 2,372 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 3 tokens
- mean: 35.12 tokens
- max: 166 tokens
|
- min: 8 tokens
- mean: 19.49 tokens
- max: 47 tokens
|
- Samples:
positive |
anchor |
Comunicar la variació d'alguna de les següents dades del Padró Municipal d'Habitants: Nom, Cognoms, Data de naixement, DNI, Passaport, Número de permís de residència (NIE), Sexe, Municipi i/o província de naixement, Nacionalitat, Titulació acadèmica. |
Quin és l'objectiu del canvi de dades personals en el Padró Municipal d'Habitants? |
EN QUÈ CONSISTEIX: Tramitar la sol·licitud de matrimoni civil a l'Ajuntament. |
Què és el matrimoni civil a l'Ajuntament de Sant Boi de Llobregat? |
En domiciliar el pagament de tributs municipals en entitats bancàries. |
Quin és el benefici de domiciliar el pagament de tributs? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_768_cosine_map@100 |
dim_512_cosine_map@100 |
dim_256_cosine_map@100 |
dim_128_cosine_map@100 |
dim_64_cosine_map@100 |
0.9664 |
9 |
- |
0.4730 |
0.4766 |
0.4640 |
0.4612 |
0.4456 |
0.4083 |
1.0738 |
10 |
2.6023 |
- |
- |
- |
- |
- |
- |
1.9329 |
18 |
- |
0.4951 |
0.4966 |
0.4977 |
0.4773 |
0.4849 |
0.4501 |
2.1477 |
20 |
0.974 |
- |
- |
- |
- |
- |
- |
2.8993 |
27 |
- |
0.4891 |
0.4973 |
0.4941 |
0.4867 |
0.4925 |
0.4684 |
3.2215 |
30 |
0.408 |
- |
- |
- |
- |
- |
- |
3.9732 |
37 |
- |
0.4944 |
0.4998 |
0.4931 |
0.4991 |
0.4974 |
0.4616 |
4.2953 |
40 |
0.2718 |
- |
- |
- |
- |
- |
- |
4.8322 |
45 |
- |
0.4924 |
0.4952 |
0.4908 |
0.4920 |
0.4973 |
0.4595 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.1.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}