adriansanz's picture
Add new SentenceTransformer model
22be2e4 verified
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3814
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Sol·licitud de l'informe d'integració social per a la renovació
o modificació de la residència.
sentences:
- Quin és el propòsit de la renovació o modificació de la residència?
- Quin és el paper de l'Administració en la Declaració responsable d'obertura?
- Quin és el lloc on es pot realitzar l'ocupació de la via pública?
- source_sentence: Aquest tràmit permet obtenir la llicència d'ocupació de la via
pública per a la instal·lació de grues desmuntables.
sentences:
- Quin és el propòsit de la consulta del Cens Electoral?
- Quin és el tràmit necessari per a la instal·lació de grues desmuntables en una
via pública?
- Quines reclamacions es consideren en aquest tràmit?
- source_sentence: 'Bonificacions: Persones amb discapacitat: bonificació 50%. Laboratori
d''art: Preu: 15€/mes'
sentences:
- Quin és el preu del curs de Laboratori d'art per a persones amb discapacitat?
- Quin és el paper de les oficines municipals d'atenció ciutadana en la renovació
de la inscripció padronal?
- Quin és el període en què les entitats i associacions registrades han de notificar
les modificacions produïdes en les dades registrals?
- source_sentence: Es tracta de la sol·licitud d'elaboració del certificat que justifica
l'antiguitat i legalitat d'un immoble, document necessari en el moment de la venda,
per poder-lo inscriure al Registre de la Propietat si no es va fer en finalitzar
l'obra.
sentences:
- Què ha de fer el responsable en relació amb els destinataris quan es limita el
tractament de dades personals?
- Quin és el motiu pel qual es sol·licita el certificat d'antiguitat i legalitat
urbanística en la venda d'un immoble?
- Qui és el destinatari de la comunicació de canvi de titularitat d'activitats?
- source_sentence: 'Laboratori d''art: D''octubre 2024 a maig de 2025. Horari: Dilluns
de 17.30h a 19.00h'
sentences:
- Quin és el dia i hora del curs de Laboratori d'art?
- Quin és el paper dels dipòsits o fiances en la garantia d'abocament controlat
de runes?
- On es pot sol·licitar la reserva especial d'estacionament?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.10384615384615385
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2153846153846154
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.27692307692307694
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.48846153846153845
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10384615384615385
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07179487179487179
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.055384615384615386
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.048846153846153845
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10384615384615385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2153846153846154
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.27692307692307694
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.48846153846153845
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2612154031642473
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.193324175824176
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21923866500444808
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.11923076923076924
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23076923076923078
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.31153846153846154
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5307692307692308
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11923076923076924
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07692307692307693
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06230769230769231
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05307692307692307
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11923076923076924
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23076923076923078
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31153846153846154
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5307692307692308
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2878219714456531
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21504578754578765
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23782490878695842
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.12692307692307692
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23846153846153847
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3269230769230769
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5269230769230769
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12692307692307692
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07948717948717948
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06538461538461539
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05269230769230769
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12692307692307692
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23846153846153847
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3269230769230769
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5269230769230769
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2920408684487264
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.22163461538461554
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24439125474069504
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.10384615384615385
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2076923076923077
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3076923076923077
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49615384615384617
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10384615384615385
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06923076923076923
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06153846153846154
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04961538461538462
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10384615384615385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2076923076923077
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3076923076923077
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49615384615384617
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26493374179245505
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.195289987789988
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22019396693132914
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.13076923076923078
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23076923076923078
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3423076923076923
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.55
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13076923076923078
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07692307692307693
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06846153846153846
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05499999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13076923076923078
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23076923076923078
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3423076923076923
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.55
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.30010874813387883
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2253495115995117
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2488774864299421
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.10384615384615385
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2230769230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2846153846153846
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49230769230769234
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10384615384615385
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07435897435897434
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05692307692307692
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04923076923076923
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10384615384615385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2230769230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2846153846153846
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49230769230769234
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2636327280635836
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19504273504273517
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21974930573072288
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-MONT-001-5ep")
# Run inference
sentences = [
"Laboratori d'art: D'octubre 2024 a maig de 2025. Horari: Dilluns de 17.30h a 19.00h",
"Quin és el dia i hora del curs de Laboratori d'art?",
"On es pot sol·licitar la reserva especial d'estacionament?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1038 |
| cosine_accuracy@3 | 0.2154 |
| cosine_accuracy@5 | 0.2769 |
| cosine_accuracy@10 | 0.4885 |
| cosine_precision@1 | 0.1038 |
| cosine_precision@3 | 0.0718 |
| cosine_precision@5 | 0.0554 |
| cosine_precision@10 | 0.0488 |
| cosine_recall@1 | 0.1038 |
| cosine_recall@3 | 0.2154 |
| cosine_recall@5 | 0.2769 |
| cosine_recall@10 | 0.4885 |
| cosine_ndcg@10 | 0.2612 |
| cosine_mrr@10 | 0.1933 |
| **cosine_map@100** | **0.2192** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1192 |
| cosine_accuracy@3 | 0.2308 |
| cosine_accuracy@5 | 0.3115 |
| cosine_accuracy@10 | 0.5308 |
| cosine_precision@1 | 0.1192 |
| cosine_precision@3 | 0.0769 |
| cosine_precision@5 | 0.0623 |
| cosine_precision@10 | 0.0531 |
| cosine_recall@1 | 0.1192 |
| cosine_recall@3 | 0.2308 |
| cosine_recall@5 | 0.3115 |
| cosine_recall@10 | 0.5308 |
| cosine_ndcg@10 | 0.2878 |
| cosine_mrr@10 | 0.215 |
| **cosine_map@100** | **0.2378** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1269 |
| cosine_accuracy@3 | 0.2385 |
| cosine_accuracy@5 | 0.3269 |
| cosine_accuracy@10 | 0.5269 |
| cosine_precision@1 | 0.1269 |
| cosine_precision@3 | 0.0795 |
| cosine_precision@5 | 0.0654 |
| cosine_precision@10 | 0.0527 |
| cosine_recall@1 | 0.1269 |
| cosine_recall@3 | 0.2385 |
| cosine_recall@5 | 0.3269 |
| cosine_recall@10 | 0.5269 |
| cosine_ndcg@10 | 0.292 |
| cosine_mrr@10 | 0.2216 |
| **cosine_map@100** | **0.2444** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1038 |
| cosine_accuracy@3 | 0.2077 |
| cosine_accuracy@5 | 0.3077 |
| cosine_accuracy@10 | 0.4962 |
| cosine_precision@1 | 0.1038 |
| cosine_precision@3 | 0.0692 |
| cosine_precision@5 | 0.0615 |
| cosine_precision@10 | 0.0496 |
| cosine_recall@1 | 0.1038 |
| cosine_recall@3 | 0.2077 |
| cosine_recall@5 | 0.3077 |
| cosine_recall@10 | 0.4962 |
| cosine_ndcg@10 | 0.2649 |
| cosine_mrr@10 | 0.1953 |
| **cosine_map@100** | **0.2202** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1308 |
| cosine_accuracy@3 | 0.2308 |
| cosine_accuracy@5 | 0.3423 |
| cosine_accuracy@10 | 0.55 |
| cosine_precision@1 | 0.1308 |
| cosine_precision@3 | 0.0769 |
| cosine_precision@5 | 0.0685 |
| cosine_precision@10 | 0.055 |
| cosine_recall@1 | 0.1308 |
| cosine_recall@3 | 0.2308 |
| cosine_recall@5 | 0.3423 |
| cosine_recall@10 | 0.55 |
| cosine_ndcg@10 | 0.3001 |
| cosine_mrr@10 | 0.2253 |
| **cosine_map@100** | **0.2489** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1038 |
| cosine_accuracy@3 | 0.2231 |
| cosine_accuracy@5 | 0.2846 |
| cosine_accuracy@10 | 0.4923 |
| cosine_precision@1 | 0.1038 |
| cosine_precision@3 | 0.0744 |
| cosine_precision@5 | 0.0569 |
| cosine_precision@10 | 0.0492 |
| cosine_recall@1 | 0.1038 |
| cosine_recall@3 | 0.2231 |
| cosine_recall@5 | 0.2846 |
| cosine_recall@10 | 0.4923 |
| cosine_ndcg@10 | 0.2636 |
| cosine_mrr@10 | 0.195 |
| **cosine_map@100** | **0.2197** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 3,814 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 39.27 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.67 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Aquest tràmit permet obtenir la llicència per a ocupació de la via pública per quioscs, casetes o parades (xurreries, gelats,...).</code> | <code>Quins són els requisits per obtenir la llicència d'ocupació de la via pública per a gelats?</code> |
| <code>Aquest tràmit permet obtenir la llicència d'ocupació de la via pública per a la instal·lació de grues desmuntables.</code> | <code>Quin és el lloc on es pot obtenir la llicència d'ocupació de la via pública per a la instal·lació de grues desmuntables en una via pública?</code> |
| <code>L’Espai Jove de Montgat disposa de dues sales, una aula, i una sala chill-out així com jardins i serveis adreçats als joves del municipi.</code> | <code>Quin és el propòsit de l'aula de l'Espai Jove de Montgat?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6695 | 10 | 3.4242 | - | - | - | - | - | - |
| 0.9372 | 14 | - | 0.2075 | 0.2165 | 0.2078 | 0.1957 | 0.2050 | 0.1949 |
| 1.3389 | 20 | 1.666 | - | - | - | - | - | - |
| 1.9414 | 29 | - | 0.2145 | 0.2184 | 0.2248 | 0.2144 | 0.2244 | 0.2112 |
| 2.0084 | 30 | 0.7666 | - | - | - | - | - | - |
| 2.6778 | 40 | 0.4859 | - | - | - | - | - | - |
| **2.9456** | **44** | **-** | **0.2263** | **0.2408** | **0.2234** | **0.2274** | **0.252** | **0.2313** |
| 3.3473 | 50 | 0.277 | - | - | - | - | - | - |
| 3.9498 | 59 | - | 0.2107 | 0.2359 | 0.2386 | 0.2275 | 0.2382 | 0.2246 |
| 4.0167 | 60 | 0.2423 | - | - | - | - | - | - |
| 4.6862 | 70 | 0.2281 | 0.2192 | 0.2378 | 0.2444 | 0.2202 | 0.2489 | 0.2197 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.1.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->