File size: 31,780 Bytes
262221f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
---
base_model: BAAI/bge-m3
datasets: []
language:
- ca
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3755
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: En el cas que la persona beneficiària mantingui les condicions
d’elegibilitat es podrà concedir la pròrroga de la prestació sempre que la persona
interessada ho sol·liciti i ho permetin les dotacions pressupostàries de cada
exercici.
sentences:
- Quin és el benefici de l'ajut a la consolidació d'empreses?
- Quin és el requisit per a la persona beneficiària?
- Quin és el benefici del Registre municipal d'entitats per a l'Ajuntament?
- source_sentence: Aquest tràmit permet la presentació de les sol·licituds per a l’atorgament
de llicències d’aprofitament especial sense transformació del domini públic marítim
terrestre consistent en la instal·lació i explotació d'escola per oferir activitats
nàutiques, amb zona d’avarada, durant la temporada.
sentences:
- Quin és el propòsit de la llicència d'aprofitament especial sense transformació
del domini públic marítim terrestre?
- Quin és el termini per a presentar les sol·licituds de subvencions per a projectes
i activitats a entitats de l'àmbit de drets civils?
- Quin és el lloc on es realitzen les activitats amb aquest permís?
- source_sentence: en cas de compliment dels requisits establerts (persones residents,
titulars de plaça d'aparcament, autotaxis, establiments hotelers)
sentences:
- Quin és el paper de l'administració en la justificació del projecte/activitat
subvencionada?
- Quin és el benefici de ser un autotaxi?
- Quin és el benefici per als establiments de la instal·lació de terrasses o vetlladors?
- source_sentence: La convocatòria és el document que estableix les condicions i els
requisits per a poder sol·licitar les subvencions pel suport educatiu a les escoles
públiques de Sitges.
sentences:
- Quin és el paper de la convocatòria en les subvencions pel suport educatiu a les
escoles públiques de Sitges?
- Quin és el benefici de la consulta prèvia de classificació d'activitat per a l'Ajuntament
de Sitges?
- Quin és el tipus d'ocupació de la via pública que es pot realitzar amb aquest
permís?
- source_sentence: Cal revisar la informació i els terminis de la convocatòria específica
de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.
sentences:
- Quin és el document que es necessita per acreditar l'any de construcció i l'adequació
a la legalitat urbanística d'un immoble?
- Quin és el paper de l'Ajuntament en la gestió de les activitats per temporades?
- On es pot trobar la informació sobre els terminis de presentació d'al·legacions
en un procés de selecció de personal de l'Ajuntament de Sitges?
model-index:
- name: BGE SITGES CAT
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.13875598086124402
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22248803827751196
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30861244019138756
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13875598086124402
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07416267942583732
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06172248803827752
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.049999999999999996
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13875598086124402
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22248803827751196
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30861244019138756
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.28246378665685234
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21777644869750143
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24297774164515282
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.13157894736842105
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22248803827751196
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3157894736842105
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4904306220095694
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13157894736842105
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07416267942583732
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06315789473684211
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04904306220095694
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13157894736842105
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22248803827751196
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3157894736842105
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4904306220095694
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.27585932698577753
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21171489329384077
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23780085464747025
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.13875598086124402
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21770334928229665
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3062200956937799
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.48564593301435405
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13875598086124402
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07256778309409888
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06124401913875598
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0485645933014354
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13875598086124402
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21770334928229665
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3062200956937799
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.48564593301435405
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.276564299219231
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21426198070934924
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24076362333582052
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.12440191387559808
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21770334928229665
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3133971291866029
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4688995215311005
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12440191387559808
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07256778309409888
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06267942583732058
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04688995215311005
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12440191387559808
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21770334928229665
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3133971291866029
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4688995215311005
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2671493494247117
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20640996430470124
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23431223249888664
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.12200956937799043
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21291866028708134
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3014354066985646
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49282296650717705
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12200956937799043
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07097288676236044
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06028708133971292
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.049282296650717705
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12200956937799043
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21291866028708134
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3014354066985646
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49282296650717705
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.27152939051256636
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20549764562922473
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23082152106975815
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.11961722488038277
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.19856459330143542
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2822966507177033
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4688995215311005
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11961722488038277
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06618819776714513
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.056459330143540674
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.046889952153110044
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11961722488038277
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.19856459330143542
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2822966507177033
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4688995215311005
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2582882544405147
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19569188121819714
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22122525098210105
name: Cosine Map@100
---
# BGE SITGES CAT
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** ca
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/SITGES-BAAI2")
# Run inference
sentences = [
"Cal revisar la informació i els terminis de la convocatòria específica de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.",
"On es pot trobar la informació sobre els terminis de presentació d'al·legacions en un procés de selecció de personal de l'Ajuntament de Sitges?",
"Quin és el document que es necessita per acreditar l'any de construcció i l'adequació a la legalitat urbanística d'un immoble?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.1388 |
| cosine_accuracy@3 | 0.2225 |
| cosine_accuracy@5 | 0.3086 |
| cosine_accuracy@10 | 0.5 |
| cosine_precision@1 | 0.1388 |
| cosine_precision@3 | 0.0742 |
| cosine_precision@5 | 0.0617 |
| cosine_precision@10 | 0.05 |
| cosine_recall@1 | 0.1388 |
| cosine_recall@3 | 0.2225 |
| cosine_recall@5 | 0.3086 |
| cosine_recall@10 | 0.5 |
| cosine_ndcg@10 | 0.2825 |
| cosine_mrr@10 | 0.2178 |
| **cosine_map@100** | **0.243** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1316 |
| cosine_accuracy@3 | 0.2225 |
| cosine_accuracy@5 | 0.3158 |
| cosine_accuracy@10 | 0.4904 |
| cosine_precision@1 | 0.1316 |
| cosine_precision@3 | 0.0742 |
| cosine_precision@5 | 0.0632 |
| cosine_precision@10 | 0.049 |
| cosine_recall@1 | 0.1316 |
| cosine_recall@3 | 0.2225 |
| cosine_recall@5 | 0.3158 |
| cosine_recall@10 | 0.4904 |
| cosine_ndcg@10 | 0.2759 |
| cosine_mrr@10 | 0.2117 |
| **cosine_map@100** | **0.2378** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1388 |
| cosine_accuracy@3 | 0.2177 |
| cosine_accuracy@5 | 0.3062 |
| cosine_accuracy@10 | 0.4856 |
| cosine_precision@1 | 0.1388 |
| cosine_precision@3 | 0.0726 |
| cosine_precision@5 | 0.0612 |
| cosine_precision@10 | 0.0486 |
| cosine_recall@1 | 0.1388 |
| cosine_recall@3 | 0.2177 |
| cosine_recall@5 | 0.3062 |
| cosine_recall@10 | 0.4856 |
| cosine_ndcg@10 | 0.2766 |
| cosine_mrr@10 | 0.2143 |
| **cosine_map@100** | **0.2408** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1244 |
| cosine_accuracy@3 | 0.2177 |
| cosine_accuracy@5 | 0.3134 |
| cosine_accuracy@10 | 0.4689 |
| cosine_precision@1 | 0.1244 |
| cosine_precision@3 | 0.0726 |
| cosine_precision@5 | 0.0627 |
| cosine_precision@10 | 0.0469 |
| cosine_recall@1 | 0.1244 |
| cosine_recall@3 | 0.2177 |
| cosine_recall@5 | 0.3134 |
| cosine_recall@10 | 0.4689 |
| cosine_ndcg@10 | 0.2671 |
| cosine_mrr@10 | 0.2064 |
| **cosine_map@100** | **0.2343** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.122 |
| cosine_accuracy@3 | 0.2129 |
| cosine_accuracy@5 | 0.3014 |
| cosine_accuracy@10 | 0.4928 |
| cosine_precision@1 | 0.122 |
| cosine_precision@3 | 0.071 |
| cosine_precision@5 | 0.0603 |
| cosine_precision@10 | 0.0493 |
| cosine_recall@1 | 0.122 |
| cosine_recall@3 | 0.2129 |
| cosine_recall@5 | 0.3014 |
| cosine_recall@10 | 0.4928 |
| cosine_ndcg@10 | 0.2715 |
| cosine_mrr@10 | 0.2055 |
| **cosine_map@100** | **0.2308** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1196 |
| cosine_accuracy@3 | 0.1986 |
| cosine_accuracy@5 | 0.2823 |
| cosine_accuracy@10 | 0.4689 |
| cosine_precision@1 | 0.1196 |
| cosine_precision@3 | 0.0662 |
| cosine_precision@5 | 0.0565 |
| cosine_precision@10 | 0.0469 |
| cosine_recall@1 | 0.1196 |
| cosine_recall@3 | 0.1986 |
| cosine_recall@5 | 0.2823 |
| cosine_recall@10 | 0.4689 |
| cosine_ndcg@10 | 0.2583 |
| cosine_mrr@10 | 0.1957 |
| **cosine_map@100** | **0.2212** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 6
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:---------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.3404 | 5 | 3.3256 | - | - | - | - | - | - | - |
| 0.6809 | 10 | 2.2115 | - | - | - | - | - | - | - |
| 0.9532 | 14 | - | 1.2963 | 0.2260 | 0.2148 | 0.2144 | 0.2258 | 0.2069 | 0.2252 |
| 1.0213 | 15 | 1.7921 | - | - | - | - | - | - | - |
| 1.3617 | 20 | 1.2295 | - | - | - | - | - | - | - |
| 1.7021 | 25 | 0.9048 | - | - | - | - | - | - | - |
| 1.9745 | 29 | - | 0.8667 | 0.2311 | 0.2267 | 0.2292 | 0.2279 | 0.2121 | 0.2278 |
| 2.0426 | 30 | 0.7256 | - | - | - | - | - | - | - |
| 2.3830 | 35 | 0.5252 | - | - | - | - | - | - | - |
| 2.7234 | 40 | 0.4648 | - | - | - | - | - | - | - |
| 2.9957 | 44 | - | 0.6920 | 0.2311 | 0.2243 | 0.2332 | 0.2319 | 0.2211 | 0.2354 |
| 3.0638 | 45 | 0.3518 | - | - | - | - | - | - | - |
| 3.4043 | 50 | 0.321 | - | - | - | - | - | - | - |
| 3.7447 | 55 | 0.2923 | - | - | - | - | - | - | - |
| 3.9489 | 58 | - | 0.6514 | 0.2343 | 0.2210 | 0.2293 | 0.2338 | 0.2242 | 0.2331 |
| 4.0851 | 60 | 0.2522 | - | - | - | - | - | - | - |
| 4.4255 | 65 | 0.2445 | - | - | - | - | - | - | - |
| 4.7660 | 70 | 0.2358 | - | - | - | - | - | - | - |
| 4.9702 | 73 | - | 0.6481 | 0.2348 | 0.2239 | 0.2252 | 0.2332 | 0.2167 | 0.2298 |
| 5.1064 | 75 | 0.2301 | - | - | - | - | - | - | - |
| 5.4468 | 80 | 0.2262 | - | - | - | - | - | - | - |
| **5.7191** | **84** | **-** | **0.646** | **0.243** | **0.2308** | **0.2343** | **0.2408** | **0.2212** | **0.2378** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |