adriansanz commited on
Commit
262221f
1 Parent(s): 09a891a

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,858 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language:
5
+ - ca
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:3755
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: En el cas que la persona beneficiària mantingui les condicions
35
+ d’elegibilitat es podrà concedir la pròrroga de la prestació sempre que la persona
36
+ interessada ho sol·liciti i ho permetin les dotacions pressupostàries de cada
37
+ exercici.
38
+ sentences:
39
+ - Quin és el benefici de l'ajut a la consolidació d'empreses?
40
+ - Quin és el requisit per a la persona beneficiària?
41
+ - Quin és el benefici del Registre municipal d'entitats per a l'Ajuntament?
42
+ - source_sentence: Aquest tràmit permet la presentació de les sol·licituds per a l’atorgament
43
+ de llicències d’aprofitament especial sense transformació del domini públic marítim
44
+ terrestre consistent en la instal·lació i explotació d'escola per oferir activitats
45
+ nàutiques, amb zona d’avarada, durant la temporada.
46
+ sentences:
47
+ - Quin és el propòsit de la llicència d'aprofitament especial sense transformació
48
+ del domini públic marítim terrestre?
49
+ - Quin és el termini per a presentar les sol·licituds de subvencions per a projectes
50
+ i activitats a entitats de l'àmbit de drets civils?
51
+ - Quin és el lloc on es realitzen les activitats amb aquest permís?
52
+ - source_sentence: en cas de compliment dels requisits establerts (persones residents,
53
+ titulars de plaça d'aparcament, autotaxis, establiments hotelers)
54
+ sentences:
55
+ - Quin és el paper de l'administració en la justificació del projecte/activitat
56
+ subvencionada?
57
+ - Quin és el benefici de ser un autotaxi?
58
+ - Quin és el benefici per als establiments de la instal·lació de terrasses o vetlladors?
59
+ - source_sentence: La convocatòria és el document que estableix les condicions i els
60
+ requisits per a poder sol·licitar les subvencions pel suport educatiu a les escoles
61
+ públiques de Sitges.
62
+ sentences:
63
+ - Quin és el paper de la convocatòria en les subvencions pel suport educatiu a les
64
+ escoles públiques de Sitges?
65
+ - Quin és el benefici de la consulta prèvia de classificació d'activitat per a l'Ajuntament
66
+ de Sitges?
67
+ - Quin és el tipus d'ocupació de la via pública que es pot realitzar amb aquest
68
+ permís?
69
+ - source_sentence: Cal revisar la informació i els terminis de la convocatòria específica
70
+ de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.
71
+ sentences:
72
+ - Quin és el document que es necessita per acreditar l'any de construcció i l'adequació
73
+ a la legalitat urbanística d'un immoble?
74
+ - Quin és el paper de l'Ajuntament en la gestió de les activitats per temporades?
75
+ - On es pot trobar la informació sobre els terminis de presentació d'al·legacions
76
+ en un procés de selecció de personal de l'Ajuntament de Sitges?
77
+ model-index:
78
+ - name: BGE SITGES CAT
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: dim 1024
85
+ type: dim_1024
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.13875598086124402
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.22248803827751196
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.30861244019138756
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.5
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.13875598086124402
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.07416267942583732
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.06172248803827752
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.049999999999999996
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.13875598086124402
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.22248803827751196
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.30861244019138756
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.5
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.28246378665685234
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.21777644869750143
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.24297774164515282
131
+ name: Cosine Map@100
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 768
137
+ type: dim_768
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.13157894736842105
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.22248803827751196
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.3157894736842105
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.4904306220095694
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.13157894736842105
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.07416267942583732
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.06315789473684211
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.04904306220095694
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.13157894736842105
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.22248803827751196
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.3157894736842105
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.4904306220095694
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.27585932698577753
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.21171489329384077
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.23780085464747025
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 512
189
+ type: dim_512
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.13875598086124402
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.21770334928229665
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.3062200956937799
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.48564593301435405
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.13875598086124402
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.07256778309409888
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.06124401913875598
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.0485645933014354
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.13875598086124402
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.21770334928229665
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.3062200956937799
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.48564593301435405
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.276564299219231
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.21426198070934924
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.24076362333582052
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 256
241
+ type: dim_256
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.12440191387559808
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.21770334928229665
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.3133971291866029
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.4688995215311005
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.12440191387559808
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.07256778309409888
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.06267942583732058
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.04688995215311005
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.12440191387559808
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.21770334928229665
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.3133971291866029
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.4688995215311005
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.2671493494247117
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.20640996430470124
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.23431223249888664
287
+ name: Cosine Map@100
288
+ - task:
289
+ type: information-retrieval
290
+ name: Information Retrieval
291
+ dataset:
292
+ name: dim 128
293
+ type: dim_128
294
+ metrics:
295
+ - type: cosine_accuracy@1
296
+ value: 0.12200956937799043
297
+ name: Cosine Accuracy@1
298
+ - type: cosine_accuracy@3
299
+ value: 0.21291866028708134
300
+ name: Cosine Accuracy@3
301
+ - type: cosine_accuracy@5
302
+ value: 0.3014354066985646
303
+ name: Cosine Accuracy@5
304
+ - type: cosine_accuracy@10
305
+ value: 0.49282296650717705
306
+ name: Cosine Accuracy@10
307
+ - type: cosine_precision@1
308
+ value: 0.12200956937799043
309
+ name: Cosine Precision@1
310
+ - type: cosine_precision@3
311
+ value: 0.07097288676236044
312
+ name: Cosine Precision@3
313
+ - type: cosine_precision@5
314
+ value: 0.06028708133971292
315
+ name: Cosine Precision@5
316
+ - type: cosine_precision@10
317
+ value: 0.049282296650717705
318
+ name: Cosine Precision@10
319
+ - type: cosine_recall@1
320
+ value: 0.12200956937799043
321
+ name: Cosine Recall@1
322
+ - type: cosine_recall@3
323
+ value: 0.21291866028708134
324
+ name: Cosine Recall@3
325
+ - type: cosine_recall@5
326
+ value: 0.3014354066985646
327
+ name: Cosine Recall@5
328
+ - type: cosine_recall@10
329
+ value: 0.49282296650717705
330
+ name: Cosine Recall@10
331
+ - type: cosine_ndcg@10
332
+ value: 0.27152939051256636
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@10
335
+ value: 0.20549764562922473
336
+ name: Cosine Mrr@10
337
+ - type: cosine_map@100
338
+ value: 0.23082152106975815
339
+ name: Cosine Map@100
340
+ - task:
341
+ type: information-retrieval
342
+ name: Information Retrieval
343
+ dataset:
344
+ name: dim 64
345
+ type: dim_64
346
+ metrics:
347
+ - type: cosine_accuracy@1
348
+ value: 0.11961722488038277
349
+ name: Cosine Accuracy@1
350
+ - type: cosine_accuracy@3
351
+ value: 0.19856459330143542
352
+ name: Cosine Accuracy@3
353
+ - type: cosine_accuracy@5
354
+ value: 0.2822966507177033
355
+ name: Cosine Accuracy@5
356
+ - type: cosine_accuracy@10
357
+ value: 0.4688995215311005
358
+ name: Cosine Accuracy@10
359
+ - type: cosine_precision@1
360
+ value: 0.11961722488038277
361
+ name: Cosine Precision@1
362
+ - type: cosine_precision@3
363
+ value: 0.06618819776714513
364
+ name: Cosine Precision@3
365
+ - type: cosine_precision@5
366
+ value: 0.056459330143540674
367
+ name: Cosine Precision@5
368
+ - type: cosine_precision@10
369
+ value: 0.046889952153110044
370
+ name: Cosine Precision@10
371
+ - type: cosine_recall@1
372
+ value: 0.11961722488038277
373
+ name: Cosine Recall@1
374
+ - type: cosine_recall@3
375
+ value: 0.19856459330143542
376
+ name: Cosine Recall@3
377
+ - type: cosine_recall@5
378
+ value: 0.2822966507177033
379
+ name: Cosine Recall@5
380
+ - type: cosine_recall@10
381
+ value: 0.4688995215311005
382
+ name: Cosine Recall@10
383
+ - type: cosine_ndcg@10
384
+ value: 0.2582882544405147
385
+ name: Cosine Ndcg@10
386
+ - type: cosine_mrr@10
387
+ value: 0.19569188121819714
388
+ name: Cosine Mrr@10
389
+ - type: cosine_map@100
390
+ value: 0.22122525098210105
391
+ name: Cosine Map@100
392
+ ---
393
+
394
+ # BGE SITGES CAT
395
+
396
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
397
+
398
+ ## Model Details
399
+
400
+ ### Model Description
401
+ - **Model Type:** Sentence Transformer
402
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
403
+ - **Maximum Sequence Length:** 8192 tokens
404
+ - **Output Dimensionality:** 1024 tokens
405
+ - **Similarity Function:** Cosine Similarity
406
+ <!-- - **Training Dataset:** Unknown -->
407
+ - **Language:** ca
408
+ - **License:** apache-2.0
409
+
410
+ ### Model Sources
411
+
412
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
413
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
414
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
415
+
416
+ ### Full Model Architecture
417
+
418
+ ```
419
+ SentenceTransformer(
420
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
421
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
422
+ (2): Normalize()
423
+ )
424
+ ```
425
+
426
+ ## Usage
427
+
428
+ ### Direct Usage (Sentence Transformers)
429
+
430
+ First install the Sentence Transformers library:
431
+
432
+ ```bash
433
+ pip install -U sentence-transformers
434
+ ```
435
+
436
+ Then you can load this model and run inference.
437
+ ```python
438
+ from sentence_transformers import SentenceTransformer
439
+
440
+ # Download from the 🤗 Hub
441
+ model = SentenceTransformer("adriansanz/SITGES-BAAI2")
442
+ # Run inference
443
+ sentences = [
444
+ "Cal revisar la informació i els terminis de la convocatòria específica de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.",
445
+ "On es pot trobar la informació sobre els terminis de presentació d'al·legacions en un procés de selecció de personal de l'Ajuntament de Sitges?",
446
+ "Quin és el document que es necessita per acreditar l'any de construcció i l'adequació a la legalitat urbanística d'un immoble?",
447
+ ]
448
+ embeddings = model.encode(sentences)
449
+ print(embeddings.shape)
450
+ # [3, 1024]
451
+
452
+ # Get the similarity scores for the embeddings
453
+ similarities = model.similarity(embeddings, embeddings)
454
+ print(similarities.shape)
455
+ # [3, 3]
456
+ ```
457
+
458
+ <!--
459
+ ### Direct Usage (Transformers)
460
+
461
+ <details><summary>Click to see the direct usage in Transformers</summary>
462
+
463
+ </details>
464
+ -->
465
+
466
+ <!--
467
+ ### Downstream Usage (Sentence Transformers)
468
+
469
+ You can finetune this model on your own dataset.
470
+
471
+ <details><summary>Click to expand</summary>
472
+
473
+ </details>
474
+ -->
475
+
476
+ <!--
477
+ ### Out-of-Scope Use
478
+
479
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
480
+ -->
481
+
482
+ ## Evaluation
483
+
484
+ ### Metrics
485
+
486
+ #### Information Retrieval
487
+ * Dataset: `dim_1024`
488
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
489
+
490
+ | Metric | Value |
491
+ |:--------------------|:----------|
492
+ | cosine_accuracy@1 | 0.1388 |
493
+ | cosine_accuracy@3 | 0.2225 |
494
+ | cosine_accuracy@5 | 0.3086 |
495
+ | cosine_accuracy@10 | 0.5 |
496
+ | cosine_precision@1 | 0.1388 |
497
+ | cosine_precision@3 | 0.0742 |
498
+ | cosine_precision@5 | 0.0617 |
499
+ | cosine_precision@10 | 0.05 |
500
+ | cosine_recall@1 | 0.1388 |
501
+ | cosine_recall@3 | 0.2225 |
502
+ | cosine_recall@5 | 0.3086 |
503
+ | cosine_recall@10 | 0.5 |
504
+ | cosine_ndcg@10 | 0.2825 |
505
+ | cosine_mrr@10 | 0.2178 |
506
+ | **cosine_map@100** | **0.243** |
507
+
508
+ #### Information Retrieval
509
+ * Dataset: `dim_768`
510
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
511
+
512
+ | Metric | Value |
513
+ |:--------------------|:-----------|
514
+ | cosine_accuracy@1 | 0.1316 |
515
+ | cosine_accuracy@3 | 0.2225 |
516
+ | cosine_accuracy@5 | 0.3158 |
517
+ | cosine_accuracy@10 | 0.4904 |
518
+ | cosine_precision@1 | 0.1316 |
519
+ | cosine_precision@3 | 0.0742 |
520
+ | cosine_precision@5 | 0.0632 |
521
+ | cosine_precision@10 | 0.049 |
522
+ | cosine_recall@1 | 0.1316 |
523
+ | cosine_recall@3 | 0.2225 |
524
+ | cosine_recall@5 | 0.3158 |
525
+ | cosine_recall@10 | 0.4904 |
526
+ | cosine_ndcg@10 | 0.2759 |
527
+ | cosine_mrr@10 | 0.2117 |
528
+ | **cosine_map@100** | **0.2378** |
529
+
530
+ #### Information Retrieval
531
+ * Dataset: `dim_512`
532
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
533
+
534
+ | Metric | Value |
535
+ |:--------------------|:-----------|
536
+ | cosine_accuracy@1 | 0.1388 |
537
+ | cosine_accuracy@3 | 0.2177 |
538
+ | cosine_accuracy@5 | 0.3062 |
539
+ | cosine_accuracy@10 | 0.4856 |
540
+ | cosine_precision@1 | 0.1388 |
541
+ | cosine_precision@3 | 0.0726 |
542
+ | cosine_precision@5 | 0.0612 |
543
+ | cosine_precision@10 | 0.0486 |
544
+ | cosine_recall@1 | 0.1388 |
545
+ | cosine_recall@3 | 0.2177 |
546
+ | cosine_recall@5 | 0.3062 |
547
+ | cosine_recall@10 | 0.4856 |
548
+ | cosine_ndcg@10 | 0.2766 |
549
+ | cosine_mrr@10 | 0.2143 |
550
+ | **cosine_map@100** | **0.2408** |
551
+
552
+ #### Information Retrieval
553
+ * Dataset: `dim_256`
554
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
555
+
556
+ | Metric | Value |
557
+ |:--------------------|:-----------|
558
+ | cosine_accuracy@1 | 0.1244 |
559
+ | cosine_accuracy@3 | 0.2177 |
560
+ | cosine_accuracy@5 | 0.3134 |
561
+ | cosine_accuracy@10 | 0.4689 |
562
+ | cosine_precision@1 | 0.1244 |
563
+ | cosine_precision@3 | 0.0726 |
564
+ | cosine_precision@5 | 0.0627 |
565
+ | cosine_precision@10 | 0.0469 |
566
+ | cosine_recall@1 | 0.1244 |
567
+ | cosine_recall@3 | 0.2177 |
568
+ | cosine_recall@5 | 0.3134 |
569
+ | cosine_recall@10 | 0.4689 |
570
+ | cosine_ndcg@10 | 0.2671 |
571
+ | cosine_mrr@10 | 0.2064 |
572
+ | **cosine_map@100** | **0.2343** |
573
+
574
+ #### Information Retrieval
575
+ * Dataset: `dim_128`
576
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
577
+
578
+ | Metric | Value |
579
+ |:--------------------|:-----------|
580
+ | cosine_accuracy@1 | 0.122 |
581
+ | cosine_accuracy@3 | 0.2129 |
582
+ | cosine_accuracy@5 | 0.3014 |
583
+ | cosine_accuracy@10 | 0.4928 |
584
+ | cosine_precision@1 | 0.122 |
585
+ | cosine_precision@3 | 0.071 |
586
+ | cosine_precision@5 | 0.0603 |
587
+ | cosine_precision@10 | 0.0493 |
588
+ | cosine_recall@1 | 0.122 |
589
+ | cosine_recall@3 | 0.2129 |
590
+ | cosine_recall@5 | 0.3014 |
591
+ | cosine_recall@10 | 0.4928 |
592
+ | cosine_ndcg@10 | 0.2715 |
593
+ | cosine_mrr@10 | 0.2055 |
594
+ | **cosine_map@100** | **0.2308** |
595
+
596
+ #### Information Retrieval
597
+ * Dataset: `dim_64`
598
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
599
+
600
+ | Metric | Value |
601
+ |:--------------------|:-----------|
602
+ | cosine_accuracy@1 | 0.1196 |
603
+ | cosine_accuracy@3 | 0.1986 |
604
+ | cosine_accuracy@5 | 0.2823 |
605
+ | cosine_accuracy@10 | 0.4689 |
606
+ | cosine_precision@1 | 0.1196 |
607
+ | cosine_precision@3 | 0.0662 |
608
+ | cosine_precision@5 | 0.0565 |
609
+ | cosine_precision@10 | 0.0469 |
610
+ | cosine_recall@1 | 0.1196 |
611
+ | cosine_recall@3 | 0.1986 |
612
+ | cosine_recall@5 | 0.2823 |
613
+ | cosine_recall@10 | 0.4689 |
614
+ | cosine_ndcg@10 | 0.2583 |
615
+ | cosine_mrr@10 | 0.1957 |
616
+ | **cosine_map@100** | **0.2212** |
617
+
618
+ <!--
619
+ ## Bias, Risks and Limitations
620
+
621
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
622
+ -->
623
+
624
+ <!--
625
+ ### Recommendations
626
+
627
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
628
+ -->
629
+
630
+ ## Training Details
631
+
632
+ ### Training Hyperparameters
633
+ #### Non-Default Hyperparameters
634
+
635
+ - `eval_strategy`: epoch
636
+ - `per_device_train_batch_size`: 16
637
+ - `per_device_eval_batch_size`: 16
638
+ - `gradient_accumulation_steps`: 16
639
+ - `learning_rate`: 2e-05
640
+ - `num_train_epochs`: 6
641
+ - `lr_scheduler_type`: cosine
642
+ - `warmup_ratio`: 0.1
643
+ - `bf16`: True
644
+ - `tf32`: True
645
+ - `load_best_model_at_end`: True
646
+ - `optim`: adamw_torch_fused
647
+ - `batch_sampler`: no_duplicates
648
+
649
+ #### All Hyperparameters
650
+ <details><summary>Click to expand</summary>
651
+
652
+ - `overwrite_output_dir`: False
653
+ - `do_predict`: False
654
+ - `eval_strategy`: epoch
655
+ - `prediction_loss_only`: True
656
+ - `per_device_train_batch_size`: 16
657
+ - `per_device_eval_batch_size`: 16
658
+ - `per_gpu_train_batch_size`: None
659
+ - `per_gpu_eval_batch_size`: None
660
+ - `gradient_accumulation_steps`: 16
661
+ - `eval_accumulation_steps`: None
662
+ - `learning_rate`: 2e-05
663
+ - `weight_decay`: 0.0
664
+ - `adam_beta1`: 0.9
665
+ - `adam_beta2`: 0.999
666
+ - `adam_epsilon`: 1e-08
667
+ - `max_grad_norm`: 1.0
668
+ - `num_train_epochs`: 6
669
+ - `max_steps`: -1
670
+ - `lr_scheduler_type`: cosine
671
+ - `lr_scheduler_kwargs`: {}
672
+ - `warmup_ratio`: 0.1
673
+ - `warmup_steps`: 0
674
+ - `log_level`: passive
675
+ - `log_level_replica`: warning
676
+ - `log_on_each_node`: True
677
+ - `logging_nan_inf_filter`: True
678
+ - `save_safetensors`: True
679
+ - `save_on_each_node`: False
680
+ - `save_only_model`: False
681
+ - `restore_callback_states_from_checkpoint`: False
682
+ - `no_cuda`: False
683
+ - `use_cpu`: False
684
+ - `use_mps_device`: False
685
+ - `seed`: 42
686
+ - `data_seed`: None
687
+ - `jit_mode_eval`: False
688
+ - `use_ipex`: False
689
+ - `bf16`: True
690
+ - `fp16`: False
691
+ - `fp16_opt_level`: O1
692
+ - `half_precision_backend`: auto
693
+ - `bf16_full_eval`: False
694
+ - `fp16_full_eval`: False
695
+ - `tf32`: True
696
+ - `local_rank`: 0
697
+ - `ddp_backend`: None
698
+ - `tpu_num_cores`: None
699
+ - `tpu_metrics_debug`: False
700
+ - `debug`: []
701
+ - `dataloader_drop_last`: False
702
+ - `dataloader_num_workers`: 0
703
+ - `dataloader_prefetch_factor`: None
704
+ - `past_index`: -1
705
+ - `disable_tqdm`: False
706
+ - `remove_unused_columns`: True
707
+ - `label_names`: None
708
+ - `load_best_model_at_end`: True
709
+ - `ignore_data_skip`: False
710
+ - `fsdp`: []
711
+ - `fsdp_min_num_params`: 0
712
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
713
+ - `fsdp_transformer_layer_cls_to_wrap`: None
714
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
715
+ - `deepspeed`: None
716
+ - `label_smoothing_factor`: 0.0
717
+ - `optim`: adamw_torch_fused
718
+ - `optim_args`: None
719
+ - `adafactor`: False
720
+ - `group_by_length`: False
721
+ - `length_column_name`: length
722
+ - `ddp_find_unused_parameters`: None
723
+ - `ddp_bucket_cap_mb`: None
724
+ - `ddp_broadcast_buffers`: False
725
+ - `dataloader_pin_memory`: True
726
+ - `dataloader_persistent_workers`: False
727
+ - `skip_memory_metrics`: True
728
+ - `use_legacy_prediction_loop`: False
729
+ - `push_to_hub`: False
730
+ - `resume_from_checkpoint`: None
731
+ - `hub_model_id`: None
732
+ - `hub_strategy`: every_save
733
+ - `hub_private_repo`: False
734
+ - `hub_always_push`: False
735
+ - `gradient_checkpointing`: False
736
+ - `gradient_checkpointing_kwargs`: None
737
+ - `include_inputs_for_metrics`: False
738
+ - `eval_do_concat_batches`: True
739
+ - `fp16_backend`: auto
740
+ - `push_to_hub_model_id`: None
741
+ - `push_to_hub_organization`: None
742
+ - `mp_parameters`:
743
+ - `auto_find_batch_size`: False
744
+ - `full_determinism`: False
745
+ - `torchdynamo`: None
746
+ - `ray_scope`: last
747
+ - `ddp_timeout`: 1800
748
+ - `torch_compile`: False
749
+ - `torch_compile_backend`: None
750
+ - `torch_compile_mode`: None
751
+ - `dispatch_batches`: None
752
+ - `split_batches`: None
753
+ - `include_tokens_per_second`: False
754
+ - `include_num_input_tokens_seen`: False
755
+ - `neftune_noise_alpha`: None
756
+ - `optim_target_modules`: None
757
+ - `batch_eval_metrics`: False
758
+ - `eval_on_start`: False
759
+ - `batch_sampler`: no_duplicates
760
+ - `multi_dataset_batch_sampler`: proportional
761
+
762
+ </details>
763
+
764
+ ### Training Logs
765
+ | Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
766
+ |:----------:|:------:|:-------------:|:---------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
767
+ | 0.3404 | 5 | 3.3256 | - | - | - | - | - | - | - |
768
+ | 0.6809 | 10 | 2.2115 | - | - | - | - | - | - | - |
769
+ | 0.9532 | 14 | - | 1.2963 | 0.2260 | 0.2148 | 0.2144 | 0.2258 | 0.2069 | 0.2252 |
770
+ | 1.0213 | 15 | 1.7921 | - | - | - | - | - | - | - |
771
+ | 1.3617 | 20 | 1.2295 | - | - | - | - | - | - | - |
772
+ | 1.7021 | 25 | 0.9048 | - | - | - | - | - | - | - |
773
+ | 1.9745 | 29 | - | 0.8667 | 0.2311 | 0.2267 | 0.2292 | 0.2279 | 0.2121 | 0.2278 |
774
+ | 2.0426 | 30 | 0.7256 | - | - | - | - | - | - | - |
775
+ | 2.3830 | 35 | 0.5252 | - | - | - | - | - | - | - |
776
+ | 2.7234 | 40 | 0.4648 | - | - | - | - | - | - | - |
777
+ | 2.9957 | 44 | - | 0.6920 | 0.2311 | 0.2243 | 0.2332 | 0.2319 | 0.2211 | 0.2354 |
778
+ | 3.0638 | 45 | 0.3518 | - | - | - | - | - | - | - |
779
+ | 3.4043 | 50 | 0.321 | - | - | - | - | - | - | - |
780
+ | 3.7447 | 55 | 0.2923 | - | - | - | - | - | - | - |
781
+ | 3.9489 | 58 | - | 0.6514 | 0.2343 | 0.2210 | 0.2293 | 0.2338 | 0.2242 | 0.2331 |
782
+ | 4.0851 | 60 | 0.2522 | - | - | - | - | - | - | - |
783
+ | 4.4255 | 65 | 0.2445 | - | - | - | - | - | - | - |
784
+ | 4.7660 | 70 | 0.2358 | - | - | - | - | - | - | - |
785
+ | 4.9702 | 73 | - | 0.6481 | 0.2348 | 0.2239 | 0.2252 | 0.2332 | 0.2167 | 0.2298 |
786
+ | 5.1064 | 75 | 0.2301 | - | - | - | - | - | - | - |
787
+ | 5.4468 | 80 | 0.2262 | - | - | - | - | - | - | - |
788
+ | **5.7191** | **84** | **-** | **0.646** | **0.243** | **0.2308** | **0.2343** | **0.2408** | **0.2212** | **0.2378** |
789
+
790
+ * The bold row denotes the saved checkpoint.
791
+
792
+ ### Framework Versions
793
+ - Python: 3.10.12
794
+ - Sentence Transformers: 3.0.1
795
+ - Transformers: 4.42.3
796
+ - PyTorch: 2.3.1+cu121
797
+ - Accelerate: 0.32.1
798
+ - Datasets: 2.20.0
799
+ - Tokenizers: 0.19.1
800
+
801
+ ## Citation
802
+
803
+ ### BibTeX
804
+
805
+ #### Sentence Transformers
806
+ ```bibtex
807
+ @inproceedings{reimers-2019-sentence-bert,
808
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
809
+ author = "Reimers, Nils and Gurevych, Iryna",
810
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
811
+ month = "11",
812
+ year = "2019",
813
+ publisher = "Association for Computational Linguistics",
814
+ url = "https://arxiv.org/abs/1908.10084",
815
+ }
816
+ ```
817
+
818
+ #### MatryoshkaLoss
819
+ ```bibtex
820
+ @misc{kusupati2024matryoshka,
821
+ title={Matryoshka Representation Learning},
822
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
823
+ year={2024},
824
+ eprint={2205.13147},
825
+ archivePrefix={arXiv},
826
+ primaryClass={cs.LG}
827
+ }
828
+ ```
829
+
830
+ #### MultipleNegativesRankingLoss
831
+ ```bibtex
832
+ @misc{henderson2017efficient,
833
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
834
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
835
+ year={2017},
836
+ eprint={1705.00652},
837
+ archivePrefix={arXiv},
838
+ primaryClass={cs.CL}
839
+ }
840
+ ```
841
+
842
+ <!--
843
+ ## Glossary
844
+
845
+ *Clearly define terms in order to be accessible across audiences.*
846
+ -->
847
+
848
+ <!--
849
+ ## Model Card Authors
850
+
851
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
852
+ -->
853
+
854
+ <!--
855
+ ## Model Card Contact
856
+
857
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
858
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b2db88d4b6003bc5e18bb9055ca222b6e7d023a3d594c7b86643bc138bf5d2b
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }