|
--- |
|
base_model: BAAI/bge-m3 |
|
datasets: [] |
|
language: |
|
- ca |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3755 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: En el cas que la persona beneficiària mantingui les condicions |
|
d’elegibilitat es podrà concedir la pròrroga de la prestació sempre que la persona |
|
interessada ho sol·liciti i ho permetin les dotacions pressupostàries de cada |
|
exercici. |
|
sentences: |
|
- Quin és el benefici de l'ajut a la consolidació d'empreses? |
|
- Quin és el requisit per a la persona beneficiària? |
|
- Quin és el benefici del Registre municipal d'entitats per a l'Ajuntament? |
|
- source_sentence: Aquest tràmit permet la presentació de les sol·licituds per a l’atorgament |
|
de llicències d’aprofitament especial sense transformació del domini públic marítim |
|
terrestre consistent en la instal·lació i explotació d'escola per oferir activitats |
|
nàutiques, amb zona d’avarada, durant la temporada. |
|
sentences: |
|
- Quin és el propòsit de la llicència d'aprofitament especial sense transformació |
|
del domini públic marítim terrestre? |
|
- Quin és el termini per a presentar les sol·licituds de subvencions per a projectes |
|
i activitats a entitats de l'àmbit de drets civils? |
|
- Quin és el lloc on es realitzen les activitats amb aquest permís? |
|
- source_sentence: en cas de compliment dels requisits establerts (persones residents, |
|
titulars de plaça d'aparcament, autotaxis, establiments hotelers) |
|
sentences: |
|
- Quin és el paper de l'administració en la justificació del projecte/activitat |
|
subvencionada? |
|
- Quin és el benefici de ser un autotaxi? |
|
- Quin és el benefici per als establiments de la instal·lació de terrasses o vetlladors? |
|
- source_sentence: La convocatòria és el document que estableix les condicions i els |
|
requisits per a poder sol·licitar les subvencions pel suport educatiu a les escoles |
|
públiques de Sitges. |
|
sentences: |
|
- Quin és el paper de la convocatòria en les subvencions pel suport educatiu a les |
|
escoles públiques de Sitges? |
|
- Quin és el benefici de la consulta prèvia de classificació d'activitat per a l'Ajuntament |
|
de Sitges? |
|
- Quin és el tipus d'ocupació de la via pública que es pot realitzar amb aquest |
|
permís? |
|
- source_sentence: Cal revisar la informació i els terminis de la convocatòria específica |
|
de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges. |
|
sentences: |
|
- Quin és el document que es necessita per acreditar l'any de construcció i l'adequació |
|
a la legalitat urbanística d'un immoble? |
|
- Quin és el paper de l'Ajuntament en la gestió de les activitats per temporades? |
|
- On es pot trobar la informació sobre els terminis de presentació d'al·legacions |
|
en un procés de selecció de personal de l'Ajuntament de Sitges? |
|
model-index: |
|
- name: BGE SITGES CAT |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 1024 |
|
type: dim_1024 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.12679425837320574 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.21291866028708134 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.30861244019138756 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.49521531100478466 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.12679425837320574 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.07097288676236044 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06172248803827751 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.049521531100478466 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.12679425837320574 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.21291866028708134 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.30861244019138756 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.49521531100478466 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.27514703200596163 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.20944786207944124 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23684652150885108 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.20574162679425836 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.31100478468899523 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.49760765550239233 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.06858054226475278 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06220095693779904 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.04976076555023923 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.20574162679425836 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.31100478468899523 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.49760765550239233 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2725409285822112 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.2052479684058634 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23218215402287107 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.12440191387559808 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.215311004784689 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.33014354066985646 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5047846889952153 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.12440191387559808 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.07177033492822966 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.0660287081339713 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.050478468899521525 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.12440191387559808 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.215311004784689 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.33014354066985646 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5047846889952153 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2802134368260993 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.21296422875370263 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23912050845024263 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.23205741626794257 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.32057416267942584 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.47607655502392343 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.07735247208931419 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06411483253588517 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.04760765550239234 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.23205741626794257 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.32057416267942584 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.47607655502392343 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2689946292721634 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.20637104123946248 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23511603125214608 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.21770334928229665 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.3253588516746411 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.07256778309409888 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06507177033492824 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.049999999999999996 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.11961722488038277 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.21770334928229665 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.3253588516746411 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2754707963170229 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.20811498443077409 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23411435647414974 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.1291866028708134 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.21291866028708134 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.32057416267942584 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.48086124401913877 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.1291866028708134 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.07097288676236044 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06411483253588518 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.04808612440191388 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.1291866028708134 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.21291866028708134 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.32057416267942584 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.48086124401913877 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2704775725936489 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.20746753246753263 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.23395020532132502 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE SITGES CAT |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** ca |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("adriansanz/SITGES-BAAI3") |
|
# Run inference |
|
sentences = [ |
|
"Cal revisar la informació i els terminis de la convocatòria específica de cada procés que trobareu a la Seu electrònica de l'Ajuntament de Sitges.", |
|
"On es pot trobar la informació sobre els terminis de presentació d'al·legacions en un procés de selecció de personal de l'Ajuntament de Sitges?", |
|
"Quin és el document que es necessita per acreditar l'any de construcció i l'adequació a la legalitat urbanística d'un immoble?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_1024` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1268 | |
|
| cosine_accuracy@3 | 0.2129 | |
|
| cosine_accuracy@5 | 0.3086 | |
|
| cosine_accuracy@10 | 0.4952 | |
|
| cosine_precision@1 | 0.1268 | |
|
| cosine_precision@3 | 0.071 | |
|
| cosine_precision@5 | 0.0617 | |
|
| cosine_precision@10 | 0.0495 | |
|
| cosine_recall@1 | 0.1268 | |
|
| cosine_recall@3 | 0.2129 | |
|
| cosine_recall@5 | 0.3086 | |
|
| cosine_recall@10 | 0.4952 | |
|
| cosine_ndcg@10 | 0.2751 | |
|
| cosine_mrr@10 | 0.2094 | |
|
| **cosine_map@100** | **0.2368** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1196 | |
|
| cosine_accuracy@3 | 0.2057 | |
|
| cosine_accuracy@5 | 0.311 | |
|
| cosine_accuracy@10 | 0.4976 | |
|
| cosine_precision@1 | 0.1196 | |
|
| cosine_precision@3 | 0.0686 | |
|
| cosine_precision@5 | 0.0622 | |
|
| cosine_precision@10 | 0.0498 | |
|
| cosine_recall@1 | 0.1196 | |
|
| cosine_recall@3 | 0.2057 | |
|
| cosine_recall@5 | 0.311 | |
|
| cosine_recall@10 | 0.4976 | |
|
| cosine_ndcg@10 | 0.2725 | |
|
| cosine_mrr@10 | 0.2052 | |
|
| **cosine_map@100** | **0.2322** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1244 | |
|
| cosine_accuracy@3 | 0.2153 | |
|
| cosine_accuracy@5 | 0.3301 | |
|
| cosine_accuracy@10 | 0.5048 | |
|
| cosine_precision@1 | 0.1244 | |
|
| cosine_precision@3 | 0.0718 | |
|
| cosine_precision@5 | 0.066 | |
|
| cosine_precision@10 | 0.0505 | |
|
| cosine_recall@1 | 0.1244 | |
|
| cosine_recall@3 | 0.2153 | |
|
| cosine_recall@5 | 0.3301 | |
|
| cosine_recall@10 | 0.5048 | |
|
| cosine_ndcg@10 | 0.2802 | |
|
| cosine_mrr@10 | 0.213 | |
|
| **cosine_map@100** | **0.2391** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1196 | |
|
| cosine_accuracy@3 | 0.2321 | |
|
| cosine_accuracy@5 | 0.3206 | |
|
| cosine_accuracy@10 | 0.4761 | |
|
| cosine_precision@1 | 0.1196 | |
|
| cosine_precision@3 | 0.0774 | |
|
| cosine_precision@5 | 0.0641 | |
|
| cosine_precision@10 | 0.0476 | |
|
| cosine_recall@1 | 0.1196 | |
|
| cosine_recall@3 | 0.2321 | |
|
| cosine_recall@5 | 0.3206 | |
|
| cosine_recall@10 | 0.4761 | |
|
| cosine_ndcg@10 | 0.269 | |
|
| cosine_mrr@10 | 0.2064 | |
|
| **cosine_map@100** | **0.2351** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1196 | |
|
| cosine_accuracy@3 | 0.2177 | |
|
| cosine_accuracy@5 | 0.3254 | |
|
| cosine_accuracy@10 | 0.5 | |
|
| cosine_precision@1 | 0.1196 | |
|
| cosine_precision@3 | 0.0726 | |
|
| cosine_precision@5 | 0.0651 | |
|
| cosine_precision@10 | 0.05 | |
|
| cosine_recall@1 | 0.1196 | |
|
| cosine_recall@3 | 0.2177 | |
|
| cosine_recall@5 | 0.3254 | |
|
| cosine_recall@10 | 0.5 | |
|
| cosine_ndcg@10 | 0.2755 | |
|
| cosine_mrr@10 | 0.2081 | |
|
| **cosine_map@100** | **0.2341** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.1292 | |
|
| cosine_accuracy@3 | 0.2129 | |
|
| cosine_accuracy@5 | 0.3206 | |
|
| cosine_accuracy@10 | 0.4809 | |
|
| cosine_precision@1 | 0.1292 | |
|
| cosine_precision@3 | 0.071 | |
|
| cosine_precision@5 | 0.0641 | |
|
| cosine_precision@10 | 0.0481 | |
|
| cosine_recall@1 | 0.1292 | |
|
| cosine_recall@3 | 0.2129 | |
|
| cosine_recall@5 | 0.3206 | |
|
| cosine_recall@10 | 0.4809 | |
|
| cosine_ndcg@10 | 0.2705 | |
|
| cosine_mrr@10 | 0.2075 | |
|
| **cosine_map@100** | **0.234** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 6 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 6 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.3404 | 5 | 3.3256 | - | - | - | - | - | - | - | |
|
| 0.6809 | 10 | 2.2115 | - | - | - | - | - | - | - | |
|
| 0.9532 | 14 | - | 1.2963 | 0.2260 | 0.2148 | 0.2144 | 0.2258 | 0.2069 | 0.2252 | |
|
| 1.0213 | 15 | 1.7921 | - | - | - | - | - | - | - | |
|
| 1.3617 | 20 | 1.2295 | - | - | - | - | - | - | - | |
|
| 1.7021 | 25 | 0.9048 | - | - | - | - | - | - | - | |
|
| 1.9745 | 29 | - | 0.8667 | 0.2311 | 0.2267 | 0.2292 | 0.2279 | 0.2121 | 0.2278 | |
|
| 2.0426 | 30 | 0.7256 | - | - | - | - | - | - | - | |
|
| 2.3830 | 35 | 0.5252 | - | - | - | - | - | - | - | |
|
| 2.7234 | 40 | 0.4648 | - | - | - | - | - | - | - | |
|
| **2.9957** | **44** | **-** | **0.692** | **0.2311** | **0.2243** | **0.2332** | **0.2319** | **0.2211** | **0.2354** | |
|
| 3.0638 | 45 | 0.3518 | - | - | - | - | - | - | - | |
|
| 3.4043 | 50 | 0.321 | - | - | - | - | - | - | - | |
|
| 3.7447 | 55 | 0.2923 | - | - | - | - | - | - | - | |
|
| 3.9489 | 58 | - | 0.6514 | 0.2343 | 0.2210 | 0.2293 | 0.2338 | 0.2242 | 0.2331 | |
|
| 4.0851 | 60 | 0.2522 | - | - | - | - | - | - | - | |
|
| 4.4255 | 65 | 0.2445 | - | - | - | - | - | - | - | |
|
| 4.7660 | 70 | 0.2358 | - | - | - | - | - | - | - | |
|
| 4.9702 | 73 | - | 0.6481 | 0.2348 | 0.2239 | 0.2252 | 0.2332 | 0.2167 | 0.2298 | |
|
| 5.1064 | 75 | 0.2301 | - | - | - | - | - | - | - | |
|
| 5.4468 | 80 | 0.2262 | - | - | - | - | - | - | - | |
|
| 5.7191 | 84 | - | 0.6460 | 0.2430 | 0.2308 | 0.2343 | 0.2408 | 0.2212 | 0.2378 | |
|
| 0.3404 | 5 | 0.1585 | - | - | - | - | - | - | - | |
|
| 0.6809 | 10 | 0.1465 | - | - | - | - | - | - | - | |
|
| 0.9532 | 14 | - | 0.6325 | 0.2407 | 0.2255 | 0.2328 | 0.2333 | 0.2266 | 0.2429 | |
|
| 1.0213 | 15 | 0.1411 | - | - | - | - | - | - | - | |
|
| 1.3617 | 20 | 0.079 | - | - | - | - | - | - | - | |
|
| 1.7021 | 25 | 0.1159 | - | - | - | - | - | - | - | |
|
| 1.9745 | 29 | - | 0.6772 | 0.2361 | 0.2287 | 0.2252 | 0.2325 | 0.2228 | 0.2387 | |
|
| 2.0426 | 30 | 0.0838 | - | - | - | - | - | - | - | |
|
| 2.3830 | 35 | 0.0647 | - | - | - | - | - | - | - | |
|
| 2.7234 | 40 | 0.0752 | - | - | - | - | - | - | - | |
|
| **2.9957** | **44** | **-** | **0.6668** | **0.2304** | **0.2354** | **0.2304** | **0.2344** | **0.2155** | **0.2321** | |
|
| 3.0638 | 45 | 0.0706 | - | - | - | - | - | - | - | |
|
| 3.4043 | 50 | 0.0478 | - | - | - | - | - | - | - | |
|
| 3.7447 | 55 | 0.0768 | - | - | - | - | - | - | - | |
|
| 3.9489 | 58 | - | 0.6040 | 0.2318 | 0.2293 | 0.2292 | 0.2305 | 0.2165 | 0.2264 | |
|
| 4.0851 | 60 | 0.0793 | - | - | - | - | - | - | - | |
|
| 4.4255 | 65 | 0.0559 | - | - | - | - | - | - | - | |
|
| 4.7660 | 70 | 0.0654 | - | - | - | - | - | - | - | |
|
| 4.9702 | 73 | - | 0.6105 | 0.2328 | 0.2328 | 0.2313 | 0.2364 | 0.2279 | 0.2320 | |
|
| 5.1064 | 75 | 0.0734 | - | - | - | - | - | - | - | |
|
| 5.4468 | 80 | 0.0616 | - | - | - | - | - | - | - | |
|
| 5.7191 | 84 | - | 0.6107 | 0.2368 | 0.2341 | 0.2351 | 0.2391 | 0.2340 | 0.2322 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |