2504separado3 / README.md
adriansanz's picture
End of training
72cdb3a verified
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 2504separado3
    results: []

2504separado3

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6752
  • Accuracy: 0.8445
  • Precision: 0.8451
  • Recall: 0.8445
  • F1: 0.8445
  • Ratio: 0.5210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 4
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.404 0.9870 38 0.7068 0.8151 0.8174 0.8151 0.8148 0.5420
0.3648 2.0 77 0.6934 0.8277 0.8317 0.8277 0.8272 0.5546
0.3989 2.9870 115 0.6752 0.8445 0.8451 0.8445 0.8445 0.5210
0.4125 3.9481 152 0.6799 0.8361 0.8367 0.8361 0.8361 0.5210

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1