2404v7

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6435
  • Accuracy: 0.8487
  • Precision: 0.8488
  • Recall: 0.8487
  • F1: 0.8487
  • Ratio: 0.4916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.5609 0.2597 10 1.6738 0.5168 0.5191 0.5168 0.5020 0.3277
1.4146 0.5195 20 0.9720 0.5294 0.5309 0.5294 0.5237 0.6092
0.924 0.7792 30 0.9377 0.5 0.25 0.5 0.3333 1.0
0.9189 1.0390 40 0.8705 0.5042 0.7511 0.5042 0.3426 0.0042
0.8741 1.2987 50 0.8415 0.5 0.25 0.5 0.3333 1.0
0.8001 1.5584 60 0.7613 0.7311 0.7640 0.7311 0.7224 0.6765
0.7156 1.8182 70 0.6827 0.7773 0.8070 0.7773 0.7718 0.3445
0.7028 2.0779 80 0.6722 0.7941 0.7967 0.7941 0.7937 0.4538
0.5612 2.3377 90 0.6600 0.7689 0.7776 0.7689 0.7671 0.5882
0.5967 2.5974 100 0.6264 0.8067 0.8075 0.8067 0.8066 0.5252
0.6661 2.8571 110 0.6225 0.8193 0.8260 0.8193 0.8184 0.4286
0.6454 3.1169 120 0.6108 0.8109 0.8336 0.8109 0.8077 0.6303
0.541 3.3766 130 0.6002 0.8235 0.8311 0.8235 0.8225 0.4244
0.538 3.6364 140 0.5880 0.8403 0.8428 0.8403 0.8401 0.5420
0.5157 3.8961 150 0.5845 0.8529 0.8603 0.8529 0.8522 0.4286
0.4868 4.1558 160 0.6059 0.8403 0.8548 0.8403 0.8387 0.6008
0.4877 4.4156 170 0.5575 0.8571 0.8572 0.8571 0.8571 0.4916
0.4758 4.6753 180 0.5656 0.8403 0.8403 0.8403 0.8403 0.5
0.4686 4.9351 190 0.5736 0.8571 0.8581 0.8571 0.8571 0.5252
0.4311 5.1948 200 0.5755 0.8571 0.8571 0.8571 0.8571 0.5
0.4452 5.4545 210 0.6053 0.8487 0.8491 0.8487 0.8487 0.5168
0.4396 5.7143 220 0.5726 0.8613 0.8614 0.8613 0.8613 0.4958
0.4923 5.9740 230 0.5534 0.8487 0.8487 0.8487 0.8487 0.5
0.4002 6.2338 240 0.5841 0.8445 0.8446 0.8445 0.8445 0.5042
0.3887 6.4935 250 0.6092 0.8361 0.8402 0.8361 0.8356 0.5546
0.402 6.7532 260 0.6164 0.8445 0.8446 0.8445 0.8445 0.4958
0.4644 7.0130 270 0.6094 0.8571 0.8622 0.8571 0.8566 0.4412
0.3905 7.2727 280 0.5938 0.8487 0.8503 0.8487 0.8486 0.5336
0.3836 7.5325 290 0.6080 0.8487 0.8496 0.8487 0.8486 0.5252
0.3781 7.7922 300 0.6193 0.8529 0.8530 0.8529 0.8529 0.4958
0.4384 8.0519 310 0.6211 0.8529 0.8532 0.8529 0.8529 0.4874
0.3324 8.3117 320 0.6312 0.8445 0.8446 0.8445 0.8445 0.4958
0.3779 8.5714 330 0.6394 0.8529 0.8532 0.8529 0.8529 0.4874
0.3772 8.8312 340 0.6415 0.8529 0.8530 0.8529 0.8529 0.4958
0.3757 9.0909 350 0.6464 0.8403 0.8404 0.8403 0.8403 0.5084
0.3742 9.3506 360 0.6441 0.8487 0.8487 0.8487 0.8487 0.5
0.3647 9.6104 370 0.6437 0.8487 0.8488 0.8487 0.8487 0.4916
0.3502 9.8701 380 0.6435 0.8487 0.8488 0.8487 0.8487 0.4916

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/2404v7

Finetuned
(30)
this model