adrianSauer's picture
End of training
d8c8ff9 verified
|
raw
history blame
2.41 kB
metadata
language:
  - gn
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Common Voice 16 - Guarani
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16
          type: mozilla-foundation/common_voice_16_1
          config: gn
          split: None
          args: gn
        metrics:
          - name: Wer
            type: wer
            value: 56.50474595198214

Common Voice 16 - Guarani

This model is a fine-tuned version of openai/whisper-base on the Common Voice 16 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5052
  • Wer: 56.5047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2519 0.0991 100 2.0016 176.2144
1.9569 0.1982 200 1.0866 92.1273
1.3814 0.2973 300 0.8375 77.2194
1.0866 0.3964 400 0.7128 69.4026
0.8892 0.4955 500 0.6427 68.7326
0.7668 0.5946 600 0.5942 65.7175
0.698 0.6938 700 0.5732 60.9715
0.593 0.7929 800 0.5278 57.5656
0.5585 0.8920 900 0.5330 60.2457
0.5199 0.9911 1000 0.5052 56.5047

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1