File size: 2,359 Bytes
6e0c531
 
2ddb016
6e0c531
 
2d63943
 
 
 
 
6e0c531
 
 
 
 
 
 
 
 
 
2ddb016
2d63943
585d75b
 
59b81c2
585d75b
 
6e0c531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b81c2
6e0c531
 
 
851aa59
 
585d75b
 
 
 
 
 
 
 
 
 
6e0c531
 
 
 
fab08a5
6e0c531
37311ac
6e0c531
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4675
- Precision: 0.8
- Recall: 0.8649
- F1: 0.8312
- Accuracy: 0.8318

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 3.85  | 50   | 1.1808          | 0.7013    | 0.7297 | 0.7152 | 0.7196   |
| No log        | 7.69  | 100  | 0.7117          | 0.7317    | 0.8108 | 0.7692 | 0.8037   |
| No log        | 11.54 | 150  | 0.5580          | 0.7778    | 0.8514 | 0.8129 | 0.8224   |
| No log        | 15.38 | 200  | 0.5009          | 0.8228    | 0.8784 | 0.8497 | 0.8411   |
| No log        | 19.23 | 250  | 0.4659          | 0.8228    | 0.8784 | 0.8497 | 0.8505   |
| No log        | 23.08 | 300  | 0.4734          | 0.7901    | 0.8649 | 0.8258 | 0.8318   |
| No log        | 26.92 | 350  | 0.4496          | 0.8205    | 0.8649 | 0.8421 | 0.8318   |
| No log        | 30.77 | 400  | 0.4619          | 0.8       | 0.8649 | 0.8312 | 0.8318   |
| No log        | 34.62 | 450  | 0.4560          | 0.8125    | 0.8784 | 0.8442 | 0.8411   |
| 0.3885        | 38.46 | 500  | 0.4675          | 0.8       | 0.8649 | 0.8312 | 0.8318   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2