test
This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4675
- Precision: 0.8
- Recall: 0.8649
- F1: 0.8312
- Accuracy: 0.8318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 3.85 | 50 | 1.1808 | 0.7013 | 0.7297 | 0.7152 | 0.7196 |
No log | 7.69 | 100 | 0.7117 | 0.7317 | 0.8108 | 0.7692 | 0.8037 |
No log | 11.54 | 150 | 0.5580 | 0.7778 | 0.8514 | 0.8129 | 0.8224 |
No log | 15.38 | 200 | 0.5009 | 0.8228 | 0.8784 | 0.8497 | 0.8411 |
No log | 19.23 | 250 | 0.4659 | 0.8228 | 0.8784 | 0.8497 | 0.8505 |
No log | 23.08 | 300 | 0.4734 | 0.7901 | 0.8649 | 0.8258 | 0.8318 |
No log | 26.92 | 350 | 0.4496 | 0.8205 | 0.8649 | 0.8421 | 0.8318 |
No log | 30.77 | 400 | 0.4619 | 0.8 | 0.8649 | 0.8312 | 0.8318 |
No log | 34.62 | 450 | 0.4560 | 0.8125 | 0.8784 | 0.8442 | 0.8411 |
0.3885 | 38.46 | 500 | 0.4675 | 0.8 | 0.8649 | 0.8312 | 0.8318 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adityaprakhar/test
Base model
microsoft/layoutlmv3-base