adenhaus's picture
End of training
a7d727d verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-small-finetuned-ssv2
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-small-finetuned-ssv2-finetuned-judo
    results: []

videomae-small-finetuned-ssv2-finetuned-judo

This model is a fine-tuned version of MCG-NJU/videomae-small-finetuned-ssv2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6398
  • Accuracy: 0.7568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 190

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0545 0.1053 20 1.0499 0.4324
0.8731 1.1053 40 1.0377 0.4865
0.7354 2.1053 60 0.9788 0.5676
0.6503 3.1053 80 0.9652 0.5946
0.6196 4.1053 100 0.8469 0.5946
0.5233 5.1053 120 0.7983 0.5676
0.4382 6.1053 140 0.7651 0.6757
0.2919 7.1053 160 0.7395 0.7297
0.3249 8.1053 180 0.6420 0.7568
0.2896 9.0526 190 0.6398 0.7568

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0