w2v-bert-2.0-nchlt_mdd
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1305
- Wer: 0.1407
- Cer: 0.0252
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.3911 | 0.2164 | 300 | 0.3147 | 0.3557 | 0.0617 |
0.3253 | 0.4327 | 600 | 0.2722 | 0.3179 | 0.0540 |
0.2547 | 0.6491 | 900 | 0.2391 | 0.3374 | 0.0517 |
0.2227 | 0.8655 | 1200 | 0.1984 | 0.2551 | 0.0436 |
0.1826 | 1.0815 | 1500 | 0.1704 | 0.2311 | 0.0377 |
0.1729 | 1.2979 | 1800 | 0.1768 | 0.2304 | 0.0410 |
0.1567 | 1.5142 | 2100 | 0.1554 | 0.2162 | 0.0355 |
0.1563 | 1.7306 | 2400 | 0.1515 | 0.2037 | 0.0347 |
0.1376 | 1.9470 | 2700 | 0.1525 | 0.2068 | 0.0362 |
0.1266 | 2.1630 | 3000 | 0.1433 | 0.1840 | 0.0334 |
0.119 | 2.3794 | 3300 | 0.1403 | 0.1901 | 0.0317 |
0.1148 | 2.5957 | 3600 | 0.1424 | 0.1753 | 0.0307 |
0.1192 | 2.8121 | 3900 | 0.1401 | 0.1800 | 0.0334 |
0.1051 | 3.0281 | 4200 | 0.1349 | 0.1744 | 0.0294 |
0.0941 | 3.2445 | 4500 | 0.1284 | 0.1732 | 0.0287 |
0.0887 | 3.4609 | 4800 | 0.1319 | 0.1624 | 0.0288 |
0.093 | 3.6772 | 5100 | 0.1322 | 0.1616 | 0.0286 |
0.0892 | 3.8936 | 5400 | 0.1309 | 0.1649 | 0.0282 |
0.0879 | 4.1096 | 5700 | 0.1318 | 0.1761 | 0.0296 |
0.0769 | 4.3260 | 6000 | 0.1219 | 0.1535 | 0.0268 |
0.0794 | 4.5424 | 6300 | 0.1214 | 0.1518 | 0.0267 |
0.0741 | 4.7587 | 6600 | 0.1192 | 0.1532 | 0.0267 |
0.0745 | 4.9751 | 6900 | 0.1210 | 0.1622 | 0.0278 |
0.0621 | 5.1911 | 7200 | 0.1205 | 0.1509 | 0.0265 |
0.0586 | 5.4075 | 7500 | 0.1197 | 0.1426 | 0.0259 |
0.0596 | 5.6239 | 7800 | 0.1177 | 0.1426 | 0.0250 |
0.0604 | 5.8402 | 8100 | 0.1224 | 0.1471 | 0.0262 |
0.0569 | 6.0563 | 8400 | 0.1241 | 0.1453 | 0.0254 |
0.0464 | 6.2726 | 8700 | 0.1560 | 0.1665 | 0.0342 |
0.0465 | 6.4890 | 9000 | 0.1279 | 0.1425 | 0.0253 |
0.047 | 6.7054 | 9300 | 0.1289 | 0.1426 | 0.0266 |
0.0501 | 6.9217 | 9600 | 0.1239 | 0.1413 | 0.0261 |
0.0415 | 7.1378 | 9900 | 0.1286 | 0.1413 | 0.0257 |
0.0377 | 7.3541 | 10200 | 0.1332 | 0.1387 | 0.0252 |
0.0358 | 7.5705 | 10500 | 0.1368 | 0.1421 | 0.0257 |
0.0399 | 7.7869 | 10800 | 0.1261 | 0.1453 | 0.0261 |
0.0407 | 8.0029 | 11100 | 0.1274 | 0.1324 | 0.0238 |
0.0278 | 8.2193 | 11400 | 0.1292 | 0.1385 | 0.0249 |
0.0353 | 8.4356 | 11700 | 0.1344 | 0.1342 | 0.0246 |
0.0318 | 8.6520 | 12000 | 0.1322 | 0.1420 | 0.0262 |
0.0319 | 8.8684 | 12300 | 0.1361 | 0.1416 | 0.0265 |
0.031 | 9.0844 | 12600 | 0.1353 | 0.1409 | 0.0257 |
0.0284 | 9.3008 | 12900 | 0.1307 | 0.1436 | 0.0260 |
0.0304 | 9.5171 | 13200 | 0.1345 | 0.1466 | 0.0265 |
0.0308 | 9.7335 | 13500 | 0.1327 | 0.1448 | 0.0259 |
0.0314 | 9.9499 | 13800 | 0.1305 | 0.1407 | 0.0252 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for aconeil/w2v-bert-2.0-nchlt_mdd
Base model
facebook/w2v-bert-2.0