|
"""
|
|
Train script for a single file
|
|
|
|
Need to set the TPU address first:
|
|
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
|
"""
|
|
|
|
import torch.multiprocessing as mp
|
|
import threading
|
|
import time
|
|
import random
|
|
import sys
|
|
import argparse
|
|
import gzip
|
|
import json
|
|
import logging
|
|
import tqdm
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
import torch
|
|
import torch_xla
|
|
import torch_xla.core
|
|
import torch_xla.core.functions
|
|
import torch_xla.core.xla_model as xm
|
|
import torch_xla.distributed.xla_multiprocessing as xmp
|
|
import torch_xla.distributed.parallel_loader as pl
|
|
import os
|
|
from shutil import copyfile
|
|
|
|
|
|
from transformers import (
|
|
AdamW,
|
|
AutoModel,
|
|
AutoTokenizer,
|
|
get_linear_schedule_with_warmup,
|
|
set_seed,
|
|
)
|
|
|
|
class AutoModelForSentenceEmbedding(nn.Module):
|
|
def __init__(self, model_name, tokenizer, normalize=True):
|
|
super(AutoModelForSentenceEmbedding, self).__init__()
|
|
|
|
self.model = AutoModel.from_pretrained(model_name)
|
|
self.normalize = normalize
|
|
self.tokenizer = tokenizer
|
|
|
|
def forward(self, **kwargs):
|
|
model_output = self.model(**kwargs)
|
|
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
|
if self.normalize:
|
|
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
|
|
|
return embeddings
|
|
|
|
def mean_pooling(self, model_output, attention_mask):
|
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
def save_pretrained(self, output_path):
|
|
if xm.is_master_ordinal():
|
|
self.tokenizer.save_pretrained(output_path)
|
|
self.model.config.save_pretrained(output_path)
|
|
|
|
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
|
|
|
|
|
|
|
|
|
def train_function(index, args, queue):
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
|
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
|
|
|
|
|
### Train Loop
|
|
device = xm.xla_device()
|
|
model = model.to(device)
|
|
|
|
# Instantiate optimizer
|
|
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
|
|
|
lr_scheduler = get_linear_schedule_with_warmup(
|
|
optimizer=optimizer,
|
|
num_warmup_steps=500,
|
|
num_training_steps=args.steps,
|
|
)
|
|
|
|
# Now we train the model
|
|
cross_entropy_loss = nn.CrossEntropyLoss()
|
|
max_grad_norm = 1
|
|
|
|
model.train()
|
|
|
|
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
|
#### Get the batch data
|
|
batch = queue.get()
|
|
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
|
|
|
|
|
if len(batch[0]) == 2: #(anchor, positive)
|
|
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
|
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
|
|
|
### Compute embeddings
|
|
embeddings_a = model(**text1.to(device))
|
|
embeddings_b = model(**text2.to(device))
|
|
|
|
### Gather all embedings
|
|
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
|
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
|
|
|
### Compute similarity scores 512 x 512
|
|
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
|
|
|
### Compute cross-entropy loss
|
|
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
|
|
|
## Symmetric loss as in CLIP
|
|
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
|
|
|
else: #(anchor, positive, negative)
|
|
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
|
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
|
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
|
|
|
embeddings_a = model(**text1.to(device))
|
|
embeddings_b1 = model(**text2.to(device))
|
|
embeddings_b2 = model(**text3.to(device))
|
|
|
|
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
|
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
|
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
|
|
|
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
|
|
|
### Compute similarity scores 512 x 1024
|
|
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
|
|
|
### Compute cross-entropy loss
|
|
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
|
|
|
## One-way loss
|
|
loss = cross_entropy_loss(scores, labels)
|
|
|
|
|
|
# Backward pass
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
|
|
|
xm.optimizer_step(optimizer, barrier=True)
|
|
lr_scheduler.step()
|
|
|
|
|
|
#Save model
|
|
if (global_step+1) % args.save_steps == 0:
|
|
output_path = os.path.join(args.output, str(global_step+1))
|
|
xm.master_print("save model: "+output_path)
|
|
model.save_pretrained(output_path)
|
|
|
|
|
|
output_path = os.path.join(args.output, "final")
|
|
xm.master_print("save model final: "+ output_path)
|
|
model.save_pretrained(output_path)
|
|
|
|
|
|
def produce_data(args, queue, filepaths, dataset_indices):
|
|
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
|
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
|
num_same_dataset = int(size_per_dataset / args.batch_size)
|
|
print("producer", "global_batch_size", global_batch_size)
|
|
print("producer", "size_per_dataset", size_per_dataset)
|
|
print("producer", "num_same_dataset", num_same_dataset)
|
|
|
|
datasets = []
|
|
for filepath in filepaths:
|
|
if "reddit_" in filepath: #Special dataset class for Reddit files
|
|
data_obj = RedditDataset(filepath)
|
|
else:
|
|
data_obj = Dataset(filepath)
|
|
datasets.append(iter(data_obj))
|
|
|
|
# Store if dataset is in a 2 col or 3 col format
|
|
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
|
|
|
while True:
|
|
texts_in_batch = set()
|
|
batch_format = None #2 vs 3 col format for this batch
|
|
|
|
#Add data from several sub datasets
|
|
for _ in range(args.datasets_per_batch):
|
|
valid_dataset = False #Check that datasets have the same 2/3 col format
|
|
while not valid_dataset:
|
|
data_idx = random.choice(dataset_indices)
|
|
if batch_format is None:
|
|
batch_format = num_cols[data_idx]
|
|
valid_dataset = True
|
|
else: #Check that this dataset has the same format
|
|
valid_dataset = (batch_format == num_cols[data_idx])
|
|
|
|
#Get data from this dataset
|
|
dataset = datasets[data_idx]
|
|
for _ in range(num_same_dataset):
|
|
for _ in range(args.nprocs):
|
|
batch_device = [] #A batch for one device
|
|
while len(batch_device) < args.batch_size:
|
|
sample = next(dataset)
|
|
in_batch = False
|
|
for text in sample:
|
|
if text in texts_in_batch:
|
|
in_batch = True
|
|
break
|
|
|
|
if not in_batch:
|
|
for text in sample:
|
|
texts_in_batch.add(text)
|
|
batch_device.append(sample)
|
|
|
|
queue.put(batch_device)
|
|
|
|
|
|
class RedditDataset:
|
|
"""
|
|
A class that handles the reddit data files
|
|
"""
|
|
def __init__(self, filepath):
|
|
self.filepath = filepath
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
with gzip.open(self.filepath, "rt") as fIn:
|
|
for line in fIn:
|
|
data = json.loads(line)
|
|
|
|
if "response" in data and "context" in data:
|
|
yield [data["response"], data["context"]]
|
|
|
|
class Dataset:
|
|
"""
|
|
A class that handles one dataset
|
|
"""
|
|
def __init__(self, filepath):
|
|
self.filepath = filepath
|
|
|
|
def __iter__(self):
|
|
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
|
dataset = []
|
|
data_format = None
|
|
|
|
while dataset is None or len(dataset) == 0:
|
|
with gzip.open(self.filepath, "rt") as fIn:
|
|
for line in fIn:
|
|
data = json.loads(line)
|
|
if isinstance(data, dict):
|
|
data = data['texts']
|
|
|
|
if data_format is None:
|
|
data_format = len(data)
|
|
|
|
#Ensure that all entries are of the same 2/3 col format
|
|
assert len(data) == data_format
|
|
|
|
if dataset is not None:
|
|
dataset.append(data)
|
|
if len(dataset) >= max_dataset_size:
|
|
dataset = None
|
|
|
|
yield data
|
|
|
|
# Data loaded. Now stream to the queue
|
|
# Shuffle for each epoch
|
|
while True:
|
|
random.shuffle(dataset)
|
|
for data in dataset:
|
|
yield data
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
|
parser.add_argument('--steps', type=int, default=2000)
|
|
parser.add_argument('--save_steps', type=int, default=10000)
|
|
parser.add_argument('--batch_size', type=int, default=64)
|
|
parser.add_argument('--max_length', type=int, default=128)
|
|
parser.add_argument('--nprocs', type=int, default=8)
|
|
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
|
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
|
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
|
parser.add_argument('data_config', help="A data_config.json file")
|
|
parser.add_argument('output')
|
|
args = parser.parse_args()
|
|
|
|
# Ensure global batch size is divisble by data_sample_size
|
|
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
|
|
|
logging.info("Output: "+args.output)
|
|
if os.path.exists(args.output):
|
|
print("Output folder already exists.")
|
|
input("Continue?")
|
|
|
|
# Write train script to output path
|
|
os.makedirs(args.output, exist_ok=True)
|
|
|
|
data_config_path = os.path.join(args.output, 'data_config.json')
|
|
copyfile(args.data_config, data_config_path)
|
|
|
|
train_script_path = os.path.join(args.output, 'train_script.py')
|
|
copyfile(__file__, train_script_path)
|
|
with open(train_script_path, 'a') as fOut:
|
|
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
|
|
|
|
|
|
|
#Load data config
|
|
with open(args.data_config) as fIn:
|
|
data_config = json.load(fIn)
|
|
|
|
queue = mp.Queue(maxsize=100*args.nprocs)
|
|
|
|
filepaths = []
|
|
dataset_indices = []
|
|
for idx, data in enumerate(data_config):
|
|
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
|
dataset_indices.extend([idx]*data['weight'])
|
|
|
|
# Start producer
|
|
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
|
p.start()
|
|
|
|
# Run training
|
|
print("Start processes:", args.nprocs)
|
|
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
|
print("Training done")
|
|
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
|
print("With 'pkill python' you can kill all remaining python processes")
|
|
p.kill()
|
|
exit()
|
|
|
|
|
|
|
|
# Script was called via:
|
|
#python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128 |