YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Fine-Tuned Darija Summarization Model

This is a fine-tuned version of Llama-3.1 for text summarization in Darija (Moroccan Arabic). The model was trained on a dataset consisting of news articles and corresponding headlines.

Usage

!pip install gradio
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your_username/my-finetuned-darija-model")
tokenizer = AutoTokenizer.from_pretrained("your_username/my-finetuned-darija-model")

def summarize_text(article_content):
    """
    Fonction pour générer un résumé à partir du texte d'entrée.
    """
    # Preprocessing: remove unwanted characters (e.g., </)
    cleaned_article_content = article_content.replace('</', '').replace('>', '')

    # Formater le texte d'entrée avec les instructions
    input_text = f"""Below is an article written in Darija. Write a concise and accurate summary:

### Article:
{cleaned_article_content}
### Summary:
"""
    # Tokenisation et génération
    inputs = tokenizer([input_text], return_tensors="pt", truncation=True).to("cuda")
    outputs = model.generate(**inputs, max_new_tokens=50)

    # Décoder le résumé et nettoyer les tags inutiles
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Nettoyer les tokens supplémentaires (</s> ou autres)
    summary = summary.replace('</s>', '').strip()

    # Ne retourner que la partie du résumé (pas les autres sections)
    if "### Summary:" in summary:
        summary = summary.split("### Summary:")[1].strip()

    return summary

# Interface Gradio
with gr.Blocks() as demo:
    gr.Markdown("## Résumé de texte en Darija")
    gr.Markdown(
        "Entrez le contenu de l'article en Darija dans la zone ci-dessous. "
        "Un résumé sera généré et affiché."
    )

    with gr.Row():
        input_box = gr.Textbox(
            label="Contenu de l'article",
            placeholder="Entrez uniquement le contenu de l'article ici...",
            lines=10
        )
        output_box = gr.Textbox(
            label="Résumé généré",
            placeholder="Le résumé apparaîtra ici...",
            lines=5
        )

    generate_button = gr.Button("Générer le résumé")
    generate_button.click(summarize_text, inputs=input_box, outputs=output_box)

# Lancer l'application
demo.launch()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.