|
--- |
|
license: apache-2.0 |
|
base_model: facebook/hubert-base-ls960 |
|
tags: |
|
- audio-classification |
|
- deepfake |
|
- audio-spoof |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: hubert-base-960h-itw-deepfake |
|
results: [] |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert-base-960h-itw-deepfake |
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0756 |
|
- Accuracy: 0.9873 |
|
- FAR: 0.0083 |
|
- FRR: 0.0203 |
|
- EER: 0.0143 |
|
|
|
## Model description |
|
|
|
### Quick Use |
|
|
|
```py3 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
config = AutoConfig.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake") |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake") |
|
|
|
model = HubertForSequenceClassification.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake", config=config,).to(device) |
|
|
|
# Your Logic Here |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | FAR | FRR | EER | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:| |
|
| 0.4081 | 0.39 | 2500 | 0.1152 | 0.9722 | 0.0285 | 0.0267 | 0.0276 | |
|
| 0.1168 | 0.79 | 5000 | 0.0822 | 0.9844 | 0.0120 | 0.0216 | 0.0168 | |
|
| 0.0979 | 1.18 | 7500 | 0.0896 | 0.9846 | 0.0130 | 0.0195 | 0.0162 | |
|
| 0.0983 | 1.57 | 10000 | 0.1007 | 0.9833 | 0.0155 | 0.0186 | 0.0171 | |
|
| 0.0901 | 1.97 | 12500 | 0.0756 | 0.9873 | 0.0083 | 0.0203 | 0.0143 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.2.dev0 |
|
- Tokenizers 0.15.1 |