Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.48 |
IFEval (0-Shot) | 54.06 |
BBH (3-Shot) | 39.88 |
MATH Lvl 5 (4-Shot) | 18.73 |
GPQA (0-shot) | 5.82 |
MuSR (0-shot) | 9.95 |
MMLU-PRO (5-shot) | 42.42 |
- Downloads last month
- 2,900
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for abhishek/autotrain-llama3-70b-orpo-v2
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard54.060
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard39.880
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard18.730
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.820
- acc_norm on MuSR (0-shot)Open LLM Leaderboard9.950
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard42.420