|
--- |
|
license: cc-by-nc-sa-4.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- Orca |
|
- AWQ |
|
inference: false |
|
--- |
|
|
|
# orca_mini_v2_13b |
|
An **Uncensored** LLaMA-13b model in collaboration with [Eric Hartford](https://huggingface.co/ehartford), trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches. |
|
|
|
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq). |
|
|
|
## Model Date |
|
|
|
July 8, 2023 |
|
|
|
## Model License |
|
|
|
Please refer to original Orca Mini v2 model license ([link](https://huggingface.co/psmathur/orca_mini_v2_13b)). |
|
|
|
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)). |
|
|
|
## CUDA Version |
|
|
|
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher. |
|
|
|
For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work. |
|
|
|
## How to Use |
|
|
|
```bash |
|
git clone https://github.com/abhinavkulkarni/llm-awq \ |
|
&& cd llm-awq \ |
|
&& git checkout e977c5a570c5048b67a45b1eb823b81de02d0d60 \ |
|
&& pip install -e . \ |
|
&& cd awq/kernels \ |
|
&& python setup.py install |
|
``` |
|
|
|
```python |
|
import torch |
|
from awq.quantize.quantizer import real_quantize_model_weight |
|
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
from huggingface_hub import snapshot_download |
|
|
|
model_name = "abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq" |
|
|
|
# Config |
|
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
# Tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name) |
|
|
|
# Model |
|
w_bit = 4 |
|
q_config = { |
|
"zero_point": True, |
|
"q_group_size": 128, |
|
} |
|
|
|
load_quant = snapshot_download(model_name) |
|
|
|
with init_empty_weights(): |
|
model = AutoModelForCausalLM.from_config(config=config, |
|
torch_dtype=torch.float16, trust_remote_code=True) |
|
|
|
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True) |
|
|
|
model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced") |
|
|
|
# Inference |
|
prompt = f'''What is the difference between nuclear fusion and fission? |
|
###Response:''' |
|
|
|
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda() |
|
output = model.generate( |
|
inputs=input_ids, |
|
temperature=0.7, |
|
max_new_tokens=512, |
|
top_p=0.15, |
|
top_k=0, |
|
repetition_penalty=1.1, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
# print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness). |
|
|
|
[orca_mini_v2_13b](https://huggingface.co/psmathur/orca_mini_v2_13b) |
|
|
|
| Task |Version| Metric | Value | |Stderr| |
|
|--------|------:|---------------|------:|---|------| |
|
|wikitext| 1|word_perplexity|23.8997| | | |
|
| | |byte_perplexity| 1.8104| | | |
|
| | |bits_per_byte | 0.8563| | | |
|
|
|
[orca_mini_v2_13b (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/psmathur-orca_mini_v2_13b-w4-g128-awq) |
|
|
|
| Task |Version| Metric | Value | |Stderr| |
|
|--------|------:|---------------|------:|---|------| |
|
|wikitext| 1|word_perplexity|27.4695| | | |
|
| | |byte_perplexity| 1.8581| | | |
|
| | |bits_per_byte | 0.8938| | | |
|
|
|
## Acknowledgements |
|
|
|
If you found `orca_mini_v2_13b` useful in your research or applications, please kindly cite using the following BibTeX: |
|
|
|
``` |
|
@misc{orca_mini_v2_13b, |
|
author = {Pankaj Mathur}, |
|
title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets}, |
|
year = {2023}, |
|
publisher = {GitHub, HuggingFace}, |
|
journal = {GitHub repository, HuggingFace repository}, |
|
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b}, |
|
} |
|
``` |
|
``` |
|
@software{touvron2023llama, |
|
title={LLaMA: Open and Efficient Foundation Language Models}, |
|
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, |
|
journal={arXiv preprint arXiv:2302.13971}, |
|
year={2023} |
|
} |
|
``` |
|
``` |
|
@misc{openalpaca, |
|
author = {Yixuan Su and Tian Lan and Deng Cai}, |
|
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}}, |
|
} |
|
``` |
|
``` |
|
@misc{alpaca, |
|
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, |
|
title = {Stanford Alpaca: An Instruction-following LLaMA model}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, |
|
} |
|
``` |
|
``` |
|
@online{DatabricksBlog2023DollyV2, |
|
author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin}, |
|
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM}, |
|
year = {2023}, |
|
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}, |
|
urldate = {2023-06-30} |
|
} |
|
``` |
|
``` |
|
@misc{xu2023wizardlm, |
|
title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, |
|
author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang}, |
|
year={2023}, |
|
eprint={2304.12244}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper: |
|
|
|
``` |
|
@article{lin2023awq, |
|
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, |
|
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, |
|
journal={arXiv}, |
|
year={2023} |
|
} |
|
``` |
|
|