ps / README.md
abhi317's picture
Upload folder using huggingface_hub
c452ece verified
|
raw
history blame
6.28 kB
metadata
base_model: abhi317/results_2
tags:
  - generated_from_trainer
model-index:
  - name: ps
    results: []

ps

This model is a fine-tuned version of abhi317/results_2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
3.9667 1.0 1 3.2203
3.9667 2.0 2 3.1776
3.9667 3.0 3 3.1302
3.9667 4.0 4 3.0774
3.9667 5.0 5 3.0206
3.9667 6.0 6 2.9620
3.9667 7.0 7 2.9025
3.9667 8.0 8 2.8303
3.9667 9.0 9 2.7513
3.9667 10.0 10 2.6685
3.9667 11.0 11 2.5901
3.9667 12.0 12 2.5100
3.9667 13.0 13 2.4258
3.9667 14.0 14 2.3446
3.9667 15.0 15 2.2655
3.9667 16.0 16 2.1921
3.9667 17.0 17 2.1228
3.9667 18.0 18 2.0600
3.9667 19.0 19 2.0048
3.9667 20.0 20 1.9579
3.9667 21.0 21 1.9125
3.9667 22.0 22 1.8690
3.9667 23.0 23 1.8311
3.9667 24.0 24 1.7907
3.9667 25.0 25 1.7512
3.9667 26.0 26 1.7272
3.9667 27.0 27 1.7020
3.9667 28.0 28 1.6785
3.9667 29.0 29 1.6482
3.9667 30.0 30 1.6108
3.9667 31.0 31 1.5778
3.9667 32.0 32 1.5455
3.9667 33.0 33 1.5059
3.9667 34.0 34 1.4684
3.9667 35.0 35 1.4343
3.9667 36.0 36 1.3967
3.9667 37.0 37 1.3623
3.9667 38.0 38 1.3328
3.9667 39.0 39 1.3074
3.9667 40.0 40 1.2830
3.9667 41.0 41 1.2600
3.9667 42.0 42 1.2419
3.9667 43.0 43 1.2293
3.9667 44.0 44 1.2184
3.9667 45.0 45 1.2097
3.9667 46.0 46 1.2001
3.9667 47.0 47 1.1898
3.9667 48.0 48 1.1794
3.9667 49.0 49 1.1679
3.9667 50.0 50 1.1534
3.9667 51.0 51 1.1407
3.9667 52.0 52 1.1269
3.9667 53.0 53 1.1130
3.9667 54.0 54 1.0979
3.9667 55.0 55 1.0840
3.9667 56.0 56 1.0725
3.9667 57.0 57 1.0626
3.9667 58.0 58 1.0536
3.9667 59.0 59 1.0447
3.9667 60.0 60 1.0377
3.9667 61.0 61 1.0330
3.9667 62.0 62 1.0267
3.9667 63.0 63 1.0243
3.9667 64.0 64 1.0188
3.9667 65.0 65 1.0114
3.9667 66.0 66 1.0058
3.9667 67.0 67 0.9979
3.9667 68.0 68 0.9849
3.9667 69.0 69 0.9685
3.9667 70.0 70 0.9535
3.9667 71.0 71 0.9384
3.9667 72.0 72 0.9272
3.9667 73.0 73 0.9154
3.9667 74.0 74 0.9060
3.9667 75.0 75 0.8956
3.9667 76.0 76 0.8864
3.9667 77.0 77 0.8766
3.9667 78.0 78 0.8688
3.9667 79.0 79 0.8624
3.9667 80.0 80 0.8556
3.9667 81.0 81 0.8493
3.9667 82.0 82 0.8439
3.9667 83.0 83 0.8397
3.9667 84.0 84 0.8363
3.9667 85.0 85 0.8338
3.9667 86.0 86 0.8304
3.9667 87.0 87 0.8272
3.9667 88.0 88 0.8233
3.9667 89.0 89 0.8200
3.9667 90.0 90 0.8166
3.9667 91.0 91 0.8130
3.9667 92.0 92 0.8100
3.9667 93.0 93 0.8078
3.9667 94.0 94 0.8055
3.9667 95.0 95 0.8041
3.9667 96.0 96 0.8029
3.9667 97.0 97 0.8020
3.9667 98.0 98 0.8016
3.9667 99.0 99 0.8013
2.3542 100.0 100 0.8012

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2