metadata
base_model: abhi317/results_2
tags:
- generated_from_trainer
model-index:
- name: ps
results: []
ps
This model is a fine-tuned version of abhi317/results_2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8012
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.9667 | 1.0 | 1 | 3.2203 |
3.9667 | 2.0 | 2 | 3.1776 |
3.9667 | 3.0 | 3 | 3.1302 |
3.9667 | 4.0 | 4 | 3.0774 |
3.9667 | 5.0 | 5 | 3.0206 |
3.9667 | 6.0 | 6 | 2.9620 |
3.9667 | 7.0 | 7 | 2.9025 |
3.9667 | 8.0 | 8 | 2.8303 |
3.9667 | 9.0 | 9 | 2.7513 |
3.9667 | 10.0 | 10 | 2.6685 |
3.9667 | 11.0 | 11 | 2.5901 |
3.9667 | 12.0 | 12 | 2.5100 |
3.9667 | 13.0 | 13 | 2.4258 |
3.9667 | 14.0 | 14 | 2.3446 |
3.9667 | 15.0 | 15 | 2.2655 |
3.9667 | 16.0 | 16 | 2.1921 |
3.9667 | 17.0 | 17 | 2.1228 |
3.9667 | 18.0 | 18 | 2.0600 |
3.9667 | 19.0 | 19 | 2.0048 |
3.9667 | 20.0 | 20 | 1.9579 |
3.9667 | 21.0 | 21 | 1.9125 |
3.9667 | 22.0 | 22 | 1.8690 |
3.9667 | 23.0 | 23 | 1.8311 |
3.9667 | 24.0 | 24 | 1.7907 |
3.9667 | 25.0 | 25 | 1.7512 |
3.9667 | 26.0 | 26 | 1.7272 |
3.9667 | 27.0 | 27 | 1.7020 |
3.9667 | 28.0 | 28 | 1.6785 |
3.9667 | 29.0 | 29 | 1.6482 |
3.9667 | 30.0 | 30 | 1.6108 |
3.9667 | 31.0 | 31 | 1.5778 |
3.9667 | 32.0 | 32 | 1.5455 |
3.9667 | 33.0 | 33 | 1.5059 |
3.9667 | 34.0 | 34 | 1.4684 |
3.9667 | 35.0 | 35 | 1.4343 |
3.9667 | 36.0 | 36 | 1.3967 |
3.9667 | 37.0 | 37 | 1.3623 |
3.9667 | 38.0 | 38 | 1.3328 |
3.9667 | 39.0 | 39 | 1.3074 |
3.9667 | 40.0 | 40 | 1.2830 |
3.9667 | 41.0 | 41 | 1.2600 |
3.9667 | 42.0 | 42 | 1.2419 |
3.9667 | 43.0 | 43 | 1.2293 |
3.9667 | 44.0 | 44 | 1.2184 |
3.9667 | 45.0 | 45 | 1.2097 |
3.9667 | 46.0 | 46 | 1.2001 |
3.9667 | 47.0 | 47 | 1.1898 |
3.9667 | 48.0 | 48 | 1.1794 |
3.9667 | 49.0 | 49 | 1.1679 |
3.9667 | 50.0 | 50 | 1.1534 |
3.9667 | 51.0 | 51 | 1.1407 |
3.9667 | 52.0 | 52 | 1.1269 |
3.9667 | 53.0 | 53 | 1.1130 |
3.9667 | 54.0 | 54 | 1.0979 |
3.9667 | 55.0 | 55 | 1.0840 |
3.9667 | 56.0 | 56 | 1.0725 |
3.9667 | 57.0 | 57 | 1.0626 |
3.9667 | 58.0 | 58 | 1.0536 |
3.9667 | 59.0 | 59 | 1.0447 |
3.9667 | 60.0 | 60 | 1.0377 |
3.9667 | 61.0 | 61 | 1.0330 |
3.9667 | 62.0 | 62 | 1.0267 |
3.9667 | 63.0 | 63 | 1.0243 |
3.9667 | 64.0 | 64 | 1.0188 |
3.9667 | 65.0 | 65 | 1.0114 |
3.9667 | 66.0 | 66 | 1.0058 |
3.9667 | 67.0 | 67 | 0.9979 |
3.9667 | 68.0 | 68 | 0.9849 |
3.9667 | 69.0 | 69 | 0.9685 |
3.9667 | 70.0 | 70 | 0.9535 |
3.9667 | 71.0 | 71 | 0.9384 |
3.9667 | 72.0 | 72 | 0.9272 |
3.9667 | 73.0 | 73 | 0.9154 |
3.9667 | 74.0 | 74 | 0.9060 |
3.9667 | 75.0 | 75 | 0.8956 |
3.9667 | 76.0 | 76 | 0.8864 |
3.9667 | 77.0 | 77 | 0.8766 |
3.9667 | 78.0 | 78 | 0.8688 |
3.9667 | 79.0 | 79 | 0.8624 |
3.9667 | 80.0 | 80 | 0.8556 |
3.9667 | 81.0 | 81 | 0.8493 |
3.9667 | 82.0 | 82 | 0.8439 |
3.9667 | 83.0 | 83 | 0.8397 |
3.9667 | 84.0 | 84 | 0.8363 |
3.9667 | 85.0 | 85 | 0.8338 |
3.9667 | 86.0 | 86 | 0.8304 |
3.9667 | 87.0 | 87 | 0.8272 |
3.9667 | 88.0 | 88 | 0.8233 |
3.9667 | 89.0 | 89 | 0.8200 |
3.9667 | 90.0 | 90 | 0.8166 |
3.9667 | 91.0 | 91 | 0.8130 |
3.9667 | 92.0 | 92 | 0.8100 |
3.9667 | 93.0 | 93 | 0.8078 |
3.9667 | 94.0 | 94 | 0.8055 |
3.9667 | 95.0 | 95 | 0.8041 |
3.9667 | 96.0 | 96 | 0.8029 |
3.9667 | 97.0 | 97 | 0.8020 |
3.9667 | 98.0 | 98 | 0.8016 |
3.9667 | 99.0 | 99 | 0.8013 |
2.3542 | 100.0 | 100 | 0.8012 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2