distilhubert-HuBERT_Distilled

This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2017
  • Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4343 1.0 874 1.4833 0.5037
0.8613 2.0 1748 0.9254 0.7081
0.6081 3.0 2622 0.8306 0.7424
0.7287 4.0 3496 0.8770 0.7453
0.208 5.0 4370 0.8191 0.7831
0.1136 6.0 5244 0.9336 0.7894
0.094 7.0 6118 1.0803 0.7997
0.0007 8.0 6992 1.1537 0.8122
0.0649 9.0 7866 1.2157 0.8077
0.0003 10.0 8740 1.2017 0.8174

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
167
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for abhi0710/distilhubert-HuBERT_Distilled

Finetuned
(431)
this model