Whisper Small Tajik

This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4141
  • Wer: 24.2606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7687 1.0 79 0.5778 39.6568
0.7193 2.0 158 0.3890 28.3568
0.3659 3.0 237 0.3611 26.0636
0.2021 4.0 316 0.3629 25.1068
0.1099 5.0 395 0.3740 25.3044
0.0597 6.0 474 0.3887 24.3081
0.0339 7.0 553 0.4005 24.6639
0.0213 8.0 632 0.4082 24.3239
0.0158 9.0 711 0.4131 24.2685
0.014 10.0 790 0.4141 24.2606

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for abduaziz/whisper-small-tajik

Finetuned
(2229)
this model

Dataset used to train abduaziz/whisper-small-tajik

Evaluation results