metadata
license: llama3
library_name: transformers
tags: []
Dracarys-Llama-3.1-70B-Instruct
Built with Meta Llama 3
Introduction
We introduce the latest in the Smaug series, the Dracarys family of finetunes targeting coding performance improvements across a variety of base models.
This variant is a finetune of meta-llama/Meta-Llama-3.1-70B-Instruct
Compared to meta-llama/Meta-Llama-3.1-70B-Instruct, Dracarys has better LiveCodeBench scores (see evaluation results below).
Model Description
- Developed by: Abacus.AI
- License: https://llama.meta.com/llama3/license/
- Finetuned from model: meta-llama/Meta-Llama-3.1-70B-Instruct.
How to use
The prompt format is unchanged from Llama 3 70B Instruct (see evaluations for prompt details for LCB)
Use with transformers
See the snippet below for usage with Transformers:
import transformers
import torch
model_id = "abacusai/Dracarys-Llama-3.1-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are data science coding assistant that generates Python code using Pandas and Numpy."},
{"role": "user", "content": "Write code to select rows from the dataframe `df` having the maximum `temp` for each `city`"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
pipeline.tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
Evaluation Results
LiveCodeBench
Model | Code Generation | Code Execution | Test Output Prediction |
---|---|---|---|
Dracarys-Llama-3.1-70B-Instruct | 37.08 | 39.00 | 49.90 |
Meta-Llama-3.1-70B-Instruct | 31.80 | 55.50 | 41.40 |