seq2seq_imlla / README.md
Aleksandra Baranowska
Add model, config, tokenizer, and custom code
8baad91 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - iva_mt_wslot
metrics:
  - bleu
model-index:
  - name: seq2seq_imlla
    results: []

seq2seq_imlla

This model is a fine-tuned version of on the iva_mt_wslot dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0658
  • Bleu: 0.0042
  • Gen Len: 5.8248

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
7.441 0.9992 636 7.0735 0.0 5.3206
6.5312 2.0 1273 6.4544 0.0175 9.5238
6.0704 2.9992 1909 6.2110 0.0007 4.9967
5.8907 4.0 2546 6.1000 0.0055 6.944
5.7606 4.9961 3180 6.0658 0.0042 5.8248

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3