aadhistii/tsel-finetune-indobert-base-p1-formal
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0095
- Validation Loss: 1.0054
- Train Precision: 0.7633
- Train Recall: 0.7633
- Train F1: 0.7633
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 940, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Epoch |
---|---|---|---|---|---|
0.8009 | 0.7030 | 0.7128 | 0.7128 | 0.7128 | 0 |
0.4891 | 0.5644 | 0.7739 | 0.7739 | 0.7739 | 1 |
0.2392 | 0.7856 | 0.7340 | 0.7340 | 0.7340 | 2 |
0.1000 | 0.7443 | 0.7633 | 0.7633 | 0.7633 | 3 |
0.0576 | 0.9280 | 0.7314 | 0.7314 | 0.7314 | 4 |
0.0307 | 0.9033 | 0.7739 | 0.7739 | 0.7739 | 5 |
0.0185 | 0.9377 | 0.7660 | 0.7660 | 0.7660 | 6 |
0.0088 | 1.0061 | 0.7580 | 0.7580 | 0.7580 | 7 |
0.0079 | 1.0007 | 0.7660 | 0.7660 | 0.7660 | 8 |
0.0095 | 1.0054 | 0.7633 | 0.7633 | 0.7633 | 9 |
Framework versions
- Transformers 4.42.3
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.