aadhistii/smsa-tsel-indobert-base-p1-formal
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0770
- Validation Loss: 0.7057
- Train Precision: 0.7275
- Train Recall: 0.7282
- Train F1: 0.7278
- Train Accuracy: 0.7282
- Epoch: 8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.0805 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 0 |
0.0776 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 1 |
0.0828 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 2 |
0.0786 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 3 |
0.0824 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 4 |
0.0787 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 5 |
0.0817 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 6 |
0.0811 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 7 |
0.0770 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 8 |
Framework versions
- Transformers 4.42.3
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.