File size: 2,316 Bytes
34428ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Large-dataset-factor
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Large-dataset-factor

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8394
- Rouge1: 0.6016
- Rouge2: 0.3238
- Rougel: 0.3867
- Rougelsum: 0.3867
- Gen Len: 142.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 1    | 1.2175          | 0.4598 | 0.2293 | 0.3085 | 0.3085    | 75.5    |
| No log        | 2.0   | 2    | 1.0135          | 0.5862 | 0.3326 | 0.432  | 0.432     | 114.5   |
| No log        | 3.0   | 3    | 0.9291          | 0.5584 | 0.2891 | 0.3831 | 0.3831    | 142.0   |
| No log        | 4.0   | 4    | 0.8851          | 0.5572 | 0.2773 | 0.3739 | 0.3739    | 142.0   |
| No log        | 5.0   | 5    | 0.8642          | 0.5822 | 0.3125 | 0.3886 | 0.3886    | 142.0   |
| No log        | 6.0   | 6    | 0.8517          | 0.5725 | 0.2977 | 0.3692 | 0.3692    | 142.0   |
| No log        | 7.0   | 7    | 0.8427          | 0.6016 | 0.3238 | 0.3867 | 0.3867    | 142.0   |
| No log        | 8.0   | 8    | 0.8394          | 0.6016 | 0.3238 | 0.3867 | 0.3867    | 142.0   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1