LED-cnn-dataset-summarization

This model is a fine-tuned version of pszemraj/led-base-book-summary on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0098
  • Rouge1: 0.4061
  • Rouge2: 0.1676
  • Rougel: 0.2695
  • Rougelsum: 0.3756
  • Gen Len: 79.036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 250 1.8883 0.4074 0.1733 0.2733 0.3741 81.696
1.9196 2.0 500 1.8782 0.4105 0.1738 0.2735 0.3789 85.312
1.9196 3.0 750 1.8763 0.408 0.1734 0.2747 0.3754 84.348
1.4188 4.0 1000 1.9043 0.4086 0.1716 0.273 0.3795 79.842
1.4188 5.0 1250 1.9344 0.4084 0.1686 0.2713 0.377 79.926
1.168 6.0 1500 1.9623 0.4121 0.1733 0.2749 0.3813 77.228
1.168 7.0 1750 2.0004 0.4092 0.1711 0.273 0.3794 77.102
1.0279 8.0 2000 2.0098 0.4061 0.1676 0.2695 0.3756 79.036

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zohaib002/LED-cnn-dataset-summarization

Finetuned
(15)
this model