Bart-CNN-dataset

This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2222
  • Rouge1: 0.4398
  • Rouge2: 0.1996
  • Rougel: 0.2964
  • Rougelsum: 0.4096
  • Gen Len: 95.364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 250 1.4136 0.4361 0.2058 0.2957 0.4075 99.678
1.3139 2.0 500 1.4521 0.444 0.2085 0.3035 0.4138 90.808
1.3139 3.0 750 1.5573 0.4409 0.2046 0.2945 0.4102 100.502
0.7471 4.0 1000 1.6873 0.4429 0.205 0.2985 0.4119 96.34
0.7471 5.0 1250 1.8544 0.4395 0.2016 0.2964 0.409 100.1
0.4392 6.0 1500 2.0239 0.4407 0.2012 0.2946 0.4085 97.476
0.4392 7.0 1750 2.1492 0.4409 0.199 0.2947 0.4101 94.41
0.2886 8.0 2000 2.2222 0.4398 0.1996 0.2964 0.4096 95.364

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
7
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zohaib002/Bart-CNN-dataset

Finetuned
(324)
this model