metadata
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget: []
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.49504950495049505
name: F1
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.4950 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dimension3_setfit_BAAI")
# Run inference
preds = model("I loved the spiderman movie!")
Training Details
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (0.0003728764106052876, 0.0003728764106052876)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.3158 | - |
0.0353 | 50 | 0.2596 | - |
0.0706 | 100 | 0.2583 | - |
0.1059 | 150 | 0.259 | - |
0.1412 | 200 | 0.268 | - |
0.1766 | 250 | 0.2594 | - |
0.2119 | 300 | 0.2606 | - |
0.2472 | 350 | 0.2628 | - |
0.2825 | 400 | 0.2643 | - |
0.3178 | 450 | 0.2594 | - |
0.3531 | 500 | 0.2579 | - |
0.3884 | 550 | 0.2632 | - |
0.4237 | 600 | 0.2583 | - |
0.4590 | 650 | 0.2575 | - |
0.4944 | 700 | 0.2636 | - |
0.5297 | 750 | 0.2579 | - |
0.5650 | 800 | 0.2652 | - |
0.6003 | 850 | 0.2599 | - |
0.6356 | 900 | 0.2592 | - |
0.6709 | 950 | 0.264 | - |
0.7062 | 1000 | 0.2625 | - |
0.7415 | 1050 | 0.2568 | - |
0.7768 | 1100 | 0.2651 | - |
0.8121 | 1150 | 0.2586 | - |
0.8475 | 1200 | 0.2636 | - |
0.8828 | 1250 | 0.2614 | - |
0.9181 | 1300 | 0.2594 | - |
0.9534 | 1350 | 0.2614 | - |
0.9887 | 1400 | 0.2621 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}