|
--- |
|
library_name: birefnet |
|
tags: |
|
- background-removal |
|
- mask-generation |
|
- Dichotomous Image Segmentation |
|
- Camouflaged Object Detection |
|
- Salient Object Detection |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
repo_url: https://github.com/ZhengPeng7/BiRefNet |
|
pipeline_tag: image-segmentation |
|
license: mit |
|
--- |
|
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1> |
|
|
|
<div align='center'> |
|
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,  |
|
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,  |
|
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,  |
|
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,  |
|
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,  |
|
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,  |
|
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup> |
|
</div> |
|
|
|
<div align='center'> |
|
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento  |
|
</div> |
|
|
|
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;"> |
|
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>  |
|
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>  |
|
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>  |
|
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>  |
|
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>  |
|
<a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>  |
|
<a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>  |
|
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  |
|
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  |
|
</div> |
|
|
|
|
|
| *DIS-Sample_1* | *DIS-Sample_2* | |
|
| :------------------------------: | :-------------------------------: | |
|
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> | |
|
|
|
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___). |
|
|
|
Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**! |
|
|
|
## How to use |
|
|
|
### 0. Install Packages: |
|
``` |
|
pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt |
|
``` |
|
|
|
### 1. Load BiRefNet: |
|
|
|
#### Use codes + weights from HuggingFace |
|
> Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest). |
|
|
|
```python |
|
# Load BiRefNet with weights |
|
from transformers import AutoModelForImageSegmentation |
|
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True) |
|
``` |
|
|
|
#### Use codes from GitHub + weights from HuggingFace |
|
> Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub. |
|
|
|
```shell |
|
# Download codes |
|
git clone https://github.com/ZhengPeng7/BiRefNet.git |
|
cd BiRefNet |
|
``` |
|
|
|
```python |
|
# Use codes locally |
|
from models.birefnet import BiRefNet |
|
|
|
# Load weights from Hugging Face Models |
|
birefnet = BiRefNet.from_pretrained('zhengpeng7/BiRefNet') |
|
``` |
|
|
|
#### Use codes from GitHub + weights from HuggingFace |
|
> Only use the weights and codes both locally. |
|
|
|
```python |
|
# Use codes and weights locally |
|
import torch |
|
from utils import check_state_dict |
|
|
|
birefnet = BiRefNet(bb_pretrained=False) |
|
state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu') |
|
state_dict = check_state_dict(state_dict) |
|
birefnet.load_state_dict(state_dict) |
|
``` |
|
|
|
#### Use the loaded BiRefNet for inference |
|
```python |
|
# Imports |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import torch |
|
from torchvision import transforms |
|
from models.birefnet import BiRefNet |
|
|
|
birefnet = ... # -- BiRefNet should be loaded with codes above, either way. |
|
torch.set_float32_matmul_precision(['high', 'highest'][0]) |
|
birefnet.to('cuda') |
|
birefnet.eval() |
|
|
|
def extract_object(birefnet, imagepath): |
|
# Data settings |
|
image_size = (1024, 1024) |
|
transform_image = transforms.Compose([ |
|
transforms.Resize(image_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
image = Image.open(imagepath) |
|
input_images = transform_image(image).unsqueeze(0).to('cuda') |
|
|
|
# Prediction |
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image.size) |
|
image.putalpha(mask) |
|
return image, mask |
|
|
|
# Visualization |
|
plt.axis("off") |
|
plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0]) |
|
plt.show() |
|
|
|
``` |
|
|
|
|
|
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**. |
|
|
|
## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_). |
|
|
|
This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD). |
|
|
|
Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :) |
|
|
|
|
|
#### Try our online demos for inference: |
|
|
|
+ Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link) |
|
+ **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo) |
|
+ **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S) |
|
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" /> |
|
|
|
## Acknowledgement: |
|
|
|
+ Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models. |
|
+ Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace. |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{BiRefNet, |
|
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation}, |
|
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu}, |
|
journal={CAAI Artificial Intelligence Research}, |
|
year={2024} |
|
} |
|
``` |