delirium_roberta / README.md
Zamoranesis's picture
Update README.md
d4f5cde
metadata
base_model: allenai/biomed_roberta_base
tags:
  - healthcare
  - medical
  - pharma
  - surgery
model-index:
  - name: delirium_roberta
    results: []
widget:
  - text: >-
      The patient has a clinical history of herniated disc, glioblastoma
      operated on last year and will undergo temporal malignant neoplasty
      surgery. The patient's diagnosis is malignant <mask> of temporal lobe

delirium_roberta

This model is a fine-tuned version of allenai/biomed_roberta_base. It achieves the following results on the evaluation set:

  • Loss: 0.3709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss
1.2088 0.4 100 0.8023
0.8075 0.8 200 0.7029
0.7404 1.2 300 0.6575
0.6826 1.6 400 0.6096
0.6578 2.0 500 0.5995
0.6525 2.4 600 0.5834
0.6223 2.8 700 0.5650
0.6 3.2 800 0.5464
0.5807 3.6 900 0.5312
0.5963 4.0 1000 0.5233
0.584 4.4 1100 0.5154
0.5508 4.8 1200 0.5049
0.5609 5.2 1300 0.4960
0.5397 5.6 1400 0.4851
0.5401 6.0 1500 0.4805
0.513 6.4 1600 0.4690
0.5247 6.8 1700 0.4647
0.5228 7.2 1800 0.4607
0.5142 7.6 1900 0.4534
0.5055 8.0 2000 0.4428
0.4942 8.4 2100 0.4338
0.4895 8.8 2200 0.4336
0.4874 9.2 2300 0.4221
0.4744 9.6 2400 0.4234
0.4743 10.0 2500 0.4139
0.4816 10.4 2600 0.4090
0.4733 10.8 2700 0.4077
0.4419 11.2 2800 0.4035
0.4552 11.6 2900 0.3989
0.4467 12.0 3000 0.3913
0.45 12.4 3100 0.3884
0.4551 12.8 3200 0.3864
0.4247 13.2 3300 0.3786
0.4432 13.6 3400 0.3874
0.4086 14.0 3500 0.3776
0.4308 14.4 3600 0.3711
0.4293 14.8 3700 0.3763
0.4235 15.2 3800 0.3733
0.4138 15.6 3900 0.3758
0.4156 16.0 4000 0.3709

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1