|
--- |
|
base_model: allenai/biomed_roberta_base |
|
tags: |
|
- medical transcriptions |
|
- healthcare |
|
model-index: |
|
- name: clinical_transcripts_roberta |
|
results: [] |
|
|
|
widget: |
|
- fill-mask: |
|
mask_token: <mask> |
|
prompt: "General endotracheal <mask> was induced without incident. Preoperative antibiotics were given for prophylaxis against surgical infection." |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# clinical_transcripts_roberta |
|
|
|
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on [medical transcriptions dataset](https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0331 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 4000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.405 | 0.51 | 100 | 1.2925 | |
|
| 1.316 | 1.01 | 200 | 1.2107 | |
|
| 1.2781 | 1.52 | 300 | 1.1704 | |
|
| 1.2911 | 2.02 | 400 | 1.1745 | |
|
| 1.2241 | 2.53 | 500 | 1.1730 | |
|
| 1.2063 | 3.03 | 600 | 1.1248 | |
|
| 1.174 | 3.54 | 700 | 1.1416 | |
|
| 1.1588 | 4.04 | 800 | 1.1495 | |
|
| 1.1513 | 4.55 | 900 | 1.1145 | |
|
| 1.1541 | 5.05 | 1000 | 1.1402 | |
|
| 1.1266 | 5.56 | 1100 | 1.1156 | |
|
| 1.1205 | 6.06 | 1200 | 1.1075 | |
|
| 1.1141 | 6.57 | 1300 | 1.1157 | |
|
| 1.0956 | 7.07 | 1400 | 1.1047 | |
|
| 1.0809 | 7.58 | 1500 | 1.0921 | |
|
| 1.0755 | 8.08 | 1600 | 1.0891 | |
|
| 1.044 | 8.59 | 1700 | 1.0758 | |
|
| 1.1103 | 9.09 | 1800 | 1.0881 | |
|
| 1.0578 | 9.6 | 1900 | 1.0578 | |
|
| 1.0462 | 10.1 | 2000 | 1.1043 | |
|
| 1.0302 | 10.61 | 2100 | 1.0787 | |
|
| 1.0236 | 11.11 | 2200 | 1.0841 | |
|
| 1.0371 | 11.62 | 2300 | 1.0904 | |
|
| 1.0178 | 12.12 | 2400 | 1.0593 | |
|
| 0.999 | 12.63 | 2500 | 1.0661 | |
|
| 0.9867 | 13.13 | 2600 | 1.0670 | |
|
| 0.9986 | 13.64 | 2700 | 1.0470 | |
|
| 0.9867 | 14.14 | 2800 | 1.0347 | |
|
| 0.9848 | 14.65 | 2900 | 1.0274 | |
|
| 0.9627 | 15.15 | 3000 | 1.0550 | |
|
| 0.9659 | 15.66 | 3100 | 1.0499 | |
|
| 0.9743 | 16.16 | 3200 | 1.0419 | |
|
| 0.9507 | 16.67 | 3300 | 1.0679 | |
|
| 0.941 | 17.17 | 3400 | 1.0142 | |
|
| 0.9548 | 17.68 | 3500 | 1.0422 | |
|
| 0.9378 | 18.18 | 3600 | 1.0471 | |
|
| 0.9339 | 18.69 | 3700 | 1.0473 | |
|
| 0.9195 | 19.19 | 3800 | 1.0248 | |
|
| 0.9254 | 19.7 | 3900 | 1.0235 | |
|
| 0.9393 | 20.2 | 4000 | 1.0331 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|