clinical_bert / README.md
Zamoranesis's picture
clinical_bert
8d76a47
|
raw
history blame
3.89 kB
metadata
license: mit
base_model: emilyalsentzer/Bio_ClinicalBERT
tags:
  - generated_from_trainer
model-index:
  - name: clinical_bert
    results: []

clinical_bert

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 100
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss
No log 0.78 100 1.9485
No log 1.56 200 1.8681
No log 2.34 300 1.8152
No log 3.12 400 1.7886
1.9285 3.91 500 1.7309
1.9285 4.69 600 1.6810
1.9285 5.47 700 1.7065
1.9285 6.25 800 1.7067
1.9285 7.03 900 1.7312
1.6644 7.81 1000 1.7006
1.6644 8.59 1100 1.6736
1.6644 9.38 1200 1.6846
1.6644 10.16 1300 1.6621
1.6644 10.94 1400 1.6381
1.5247 11.72 1500 1.6281
1.5247 12.5 1600 1.6605
1.5247 13.28 1700 1.6770
1.5247 14.06 1800 1.6666
1.5247 14.84 1900 1.6620
1.4334 15.62 2000 1.6677
1.4334 16.41 2100 1.6311
1.4334 17.19 2200 1.6743
1.4334 17.97 2300 1.6586
1.4334 18.75 2400 1.6086
1.3423 19.53 2500 1.6229
1.3423 20.31 2600 1.6475
1.3423 21.09 2700 1.6388
1.3423 21.88 2800 1.6275
1.3423 22.66 2900 1.6372
1.2712 23.44 3000 1.6345
1.2712 24.22 3100 1.6442
1.2712 25.0 3200 1.6864
1.2712 25.78 3300 1.6139
1.2712 26.56 3400 1.6161
1.215 27.34 3500 1.6491
1.215 28.12 3600 1.6442
1.215 28.91 3700 1.6409
1.215 29.69 3800 1.6539
1.215 30.47 3900 1.6052
1.1652 31.25 4000 1.6459
1.1652 32.03 4100 1.6362
1.1652 32.81 4200 1.6413
1.1652 33.59 4300 1.6377
1.1652 34.38 4400 1.6344
1.1213 35.16 4500 1.6406
1.1213 35.94 4600 1.6113
1.1213 36.72 4700 1.6410
1.1213 37.5 4800 1.6378
1.1213 38.28 4900 1.6341
1.0939 39.06 5000 1.6020

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3