wavlm-large-finetuned-iemocap2

This model is a fine-tuned version of microsoft/wavlm-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0935
  • Accuracy: 0.5335
  • F1: 0.5005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3826 0.98 25 1.3815 0.2502 0.1003
1.3263 1.98 50 1.3663 0.2502 0.1002
1.2563 2.98 75 1.2589 0.3870 0.3051
1.1869 3.98 100 1.2042 0.3977 0.3428
1.1291 4.98 125 1.1768 0.4539 0.4557
1.1171 5.98 150 1.1425 0.4888 0.4799
1.0811 6.98 175 1.1316 0.4956 0.4851
1.0627 7.98 200 1.1241 0.5044 0.4859
1.079 8.98 225 1.1026 0.5228 0.5031
1.0294 9.98 250 1.1018 0.5199 0.4959
1.0088 10.98 275 1.0903 0.5325 0.5046
1.0217 11.98 300 1.0966 0.5296 0.5015
1.0034 12.98 325 1.1012 0.5296 0.4990
1.0024 13.98 350 1.0832 0.5393 0.5127
1.0047 14.98 375 1.0902 0.5315 0.4986
0.9436 15.98 400 1.0896 0.5373 0.5085
0.9584 16.98 425 1.0859 0.5412 0.5114
0.9859 17.98 450 1.0865 0.5412 0.5120
0.9679 18.98 475 1.0926 0.5335 0.4999
0.9468 19.98 500 1.0935 0.5335 0.5005

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.