ZJF-Thunder
添加文件
e26e560
# Copyright (c) Open-MMLab. All rights reserved.
import os
import os.path as osp
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmdet.core import visualization as vis
def test_color():
assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.)
assert vis.color_val_matplotlib('green') == (0., 1., 0.)
assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255)
assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255)
assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.)
# forbid white color
with pytest.raises(TypeError):
vis.color_val_matplotlib([255, 255, 255])
# forbid float
with pytest.raises(TypeError):
vis.color_val_matplotlib(1.0)
# overflowed
with pytest.raises(AssertionError):
vis.color_val_matplotlib((0, 0, 500))
def test_imshow_det_bboxes():
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image',
'image.jpg')
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
out_image = vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape
assert not np.allclose(image, out_image)
os.remove(tmp_filename)
# test grayscale images
image = np.ones((10, 10), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
out_image = vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape[:2]
os.remove(tmp_filename)
# test shaped (0,)
image = np.ones((10, 10, 3), np.uint8)
bbox = np.ones((0, 4))
label = np.ones((0, ))
vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test mask
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
segms = np.random.random((2, 10, 10)) > 0.5
segms = np.array(segms, np.int32)
vis.imshow_det_bboxes(
image, bbox, label, segms, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test tensor mask type error
with pytest.raises(AttributeError):
segms = torch.tensor(segms)
vis.imshow_det_bboxes(image, bbox, label, segms, show=False)
def test_imshow_gt_det_bboxes():
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image',
'image.jpg')
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
annotation = dict(gt_bboxes=bbox, gt_labels=label)
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]])
result = [det_result]
out_image = vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape
assert not np.allclose(image, out_image)
os.remove(tmp_filename)
# test grayscale images
image = np.ones((10, 10), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
annotation = dict(gt_bboxes=bbox, gt_labels=label)
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]])
result = [det_result]
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test numpy mask
gt_mask = np.ones((2, 10, 10))
annotation['gt_masks'] = gt_mask
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test tensor mask
gt_mask = torch.ones((2, 10, 10))
annotation['gt_masks'] = gt_mask
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test unsupported type
annotation['gt_masks'] = []
with pytest.raises(TypeError):
vis.imshow_gt_det_bboxes(image, annotation, result, show=False)