ZJF-Thunder
添加文件
e26e560
"""
CommandLine:
pytest tests/test_utils/test_anchor.py
xdoctest tests/test_utils/test_anchor.py zero
"""
import torch
def test_standard_anchor_generator():
from mmdet.core.anchor import build_anchor_generator
anchor_generator_cfg = dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8])
anchor_generator = build_anchor_generator(anchor_generator_cfg)
assert anchor_generator is not None
def test_strides():
from mmdet.core import AnchorGenerator
# Square strides
self = AnchorGenerator([10], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 5., 5., 15.], [5., 5., 15., 15.]])
assert torch.equal(anchors[0], expected_anchors)
# Different strides in x and y direction
self = AnchorGenerator([(10, 20)], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 15., 5., 25.], [5., 15., 15., 25.]])
assert torch.equal(anchors[0], expected_anchors)
def test_ssd_anchor_generator():
from mmdet.core.anchor import build_anchor_generator
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
anchor_generator_cfg = dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
basesize_ratio_range=(0.15, 0.9),
strides=[8, 16, 32, 64, 100, 300],
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])
featmap_sizes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
anchor_generator = build_anchor_generator(anchor_generator_cfg)
# check base anchors
expected_base_anchors = [
torch.Tensor([[-6.5000, -6.5000, 14.5000, 14.5000],
[-11.3704, -11.3704, 19.3704, 19.3704],
[-10.8492, -3.4246, 18.8492, 11.4246],
[-3.4246, -10.8492, 11.4246, 18.8492]]),
torch.Tensor([[-14.5000, -14.5000, 30.5000, 30.5000],
[-25.3729, -25.3729, 41.3729, 41.3729],
[-23.8198, -7.9099, 39.8198, 23.9099],
[-7.9099, -23.8198, 23.9099, 39.8198],
[-30.9711, -4.9904, 46.9711, 20.9904],
[-4.9904, -30.9711, 20.9904, 46.9711]]),
torch.Tensor([[-33.5000, -33.5000, 65.5000, 65.5000],
[-45.5366, -45.5366, 77.5366, 77.5366],
[-54.0036, -19.0018, 86.0036, 51.0018],
[-19.0018, -54.0036, 51.0018, 86.0036],
[-69.7365, -12.5788, 101.7365, 44.5788],
[-12.5788, -69.7365, 44.5788, 101.7365]]),
torch.Tensor([[-44.5000, -44.5000, 108.5000, 108.5000],
[-56.9817, -56.9817, 120.9817, 120.9817],
[-76.1873, -22.0937, 140.1873, 86.0937],
[-22.0937, -76.1873, 86.0937, 140.1873],
[-100.5019, -12.1673, 164.5019, 76.1673],
[-12.1673, -100.5019, 76.1673, 164.5019]]),
torch.Tensor([[-53.5000, -53.5000, 153.5000, 153.5000],
[-66.2185, -66.2185, 166.2185, 166.2185],
[-96.3711, -23.1855, 196.3711, 123.1855],
[-23.1855, -96.3711, 123.1855, 196.3711]]),
torch.Tensor([[19.5000, 19.5000, 280.5000, 280.5000],
[6.6342, 6.6342, 293.3658, 293.3658],
[-34.5549, 57.7226, 334.5549, 242.2774],
[57.7226, -34.5549, 242.2774, 334.5549]]),
]
base_anchors = anchor_generator.base_anchors
for i, base_anchor in enumerate(base_anchors):
assert base_anchor.allclose(expected_base_anchors[i])
# check valid flags
expected_valid_pixels = [5776, 2166, 600, 150, 36, 4]
multi_level_valid_flags = anchor_generator.valid_flags(
featmap_sizes, (300, 300), device)
for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
assert single_level_valid_flag.sum() == expected_valid_pixels[i]
# check number of base anchors for each level
assert anchor_generator.num_base_anchors == [4, 6, 6, 6, 4, 4]
# check anchor generation
anchors = anchor_generator.grid_anchors(featmap_sizes, device)
assert len(anchors) == 6
def test_anchor_generator_with_tuples():
from mmdet.core.anchor import build_anchor_generator
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
anchor_generator_cfg = dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
basesize_ratio_range=(0.15, 0.9),
strides=[8, 16, 32, 64, 100, 300],
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])
featmap_sizes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
anchor_generator = build_anchor_generator(anchor_generator_cfg)
anchors = anchor_generator.grid_anchors(featmap_sizes, device)
anchor_generator_cfg_tuples = dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
basesize_ratio_range=(0.15, 0.9),
strides=[(8, 8), (16, 16), (32, 32), (64, 64), (100, 100), (300, 300)],
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])
anchor_generator_tuples = build_anchor_generator(
anchor_generator_cfg_tuples)
anchors_tuples = anchor_generator_tuples.grid_anchors(
featmap_sizes, device)
for anchor, anchor_tuples in zip(anchors, anchors_tuples):
assert torch.equal(anchor, anchor_tuples)
def test_yolo_anchor_generator():
from mmdet.core.anchor import build_anchor_generator
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
anchor_generator_cfg = dict(
type='YOLOAnchorGenerator',
strides=[32, 16, 8],
base_sizes=[
[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)],
])
featmap_sizes = [(14, 18), (28, 36), (56, 72)]
anchor_generator = build_anchor_generator(anchor_generator_cfg)
# check base anchors
expected_base_anchors = [
torch.Tensor([[-42.0000, -29.0000, 74.0000, 61.0000],
[-62.0000, -83.0000, 94.0000, 115.0000],
[-170.5000, -147.0000, 202.5000, 179.0000]]),
torch.Tensor([[-7.0000, -22.5000, 23.0000, 38.5000],
[-23.0000, -14.5000, 39.0000, 30.5000],
[-21.5000, -51.5000, 37.5000, 67.5000]]),
torch.Tensor([[-1.0000, -2.5000, 9.0000, 10.5000],
[-4.0000, -11.0000, 12.0000, 19.0000],
[-12.5000, -7.5000, 20.5000, 15.5000]])
]
base_anchors = anchor_generator.base_anchors
for i, base_anchor in enumerate(base_anchors):
assert base_anchor.allclose(expected_base_anchors[i])
# check number of base anchors for each level
assert anchor_generator.num_base_anchors == [3, 3, 3]
# check anchor generation
anchors = anchor_generator.grid_anchors(featmap_sizes, device)
assert len(anchors) == 3
def test_retina_anchor():
from mmdet.models import build_head
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
# head configs modified from
# configs/nas_fpn/retinanet_r50_fpn_crop640_50e.py
bbox_head = dict(
type='RetinaSepBNHead',
num_classes=4,
num_ins=5,
in_channels=4,
stacked_convs=1,
feat_channels=4,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]))
retina_head = build_head(bbox_head)
assert retina_head.anchor_generator is not None
# use the featmap sizes in NASFPN setting to test retina head
featmap_sizes = [(80, 80), (40, 40), (20, 20), (10, 10), (5, 5)]
# check base anchors
expected_base_anchors = [
torch.Tensor([[-22.6274, -11.3137, 22.6274, 11.3137],
[-28.5088, -14.2544, 28.5088, 14.2544],
[-35.9188, -17.9594, 35.9188, 17.9594],
[-16.0000, -16.0000, 16.0000, 16.0000],
[-20.1587, -20.1587, 20.1587, 20.1587],
[-25.3984, -25.3984, 25.3984, 25.3984],
[-11.3137, -22.6274, 11.3137, 22.6274],
[-14.2544, -28.5088, 14.2544, 28.5088],
[-17.9594, -35.9188, 17.9594, 35.9188]]),
torch.Tensor([[-45.2548, -22.6274, 45.2548, 22.6274],
[-57.0175, -28.5088, 57.0175, 28.5088],
[-71.8376, -35.9188, 71.8376, 35.9188],
[-32.0000, -32.0000, 32.0000, 32.0000],
[-40.3175, -40.3175, 40.3175, 40.3175],
[-50.7968, -50.7968, 50.7968, 50.7968],
[-22.6274, -45.2548, 22.6274, 45.2548],
[-28.5088, -57.0175, 28.5088, 57.0175],
[-35.9188, -71.8376, 35.9188, 71.8376]]),
torch.Tensor([[-90.5097, -45.2548, 90.5097, 45.2548],
[-114.0350, -57.0175, 114.0350, 57.0175],
[-143.6751, -71.8376, 143.6751, 71.8376],
[-64.0000, -64.0000, 64.0000, 64.0000],
[-80.6349, -80.6349, 80.6349, 80.6349],
[-101.5937, -101.5937, 101.5937, 101.5937],
[-45.2548, -90.5097, 45.2548, 90.5097],
[-57.0175, -114.0350, 57.0175, 114.0350],
[-71.8376, -143.6751, 71.8376, 143.6751]]),
torch.Tensor([[-181.0193, -90.5097, 181.0193, 90.5097],
[-228.0701, -114.0350, 228.0701, 114.0350],
[-287.3503, -143.6751, 287.3503, 143.6751],
[-128.0000, -128.0000, 128.0000, 128.0000],
[-161.2699, -161.2699, 161.2699, 161.2699],
[-203.1873, -203.1873, 203.1873, 203.1873],
[-90.5097, -181.0193, 90.5097, 181.0193],
[-114.0350, -228.0701, 114.0350, 228.0701],
[-143.6751, -287.3503, 143.6751, 287.3503]]),
torch.Tensor([[-362.0387, -181.0193, 362.0387, 181.0193],
[-456.1401, -228.0701, 456.1401, 228.0701],
[-574.7006, -287.3503, 574.7006, 287.3503],
[-256.0000, -256.0000, 256.0000, 256.0000],
[-322.5398, -322.5398, 322.5398, 322.5398],
[-406.3747, -406.3747, 406.3747, 406.3747],
[-181.0193, -362.0387, 181.0193, 362.0387],
[-228.0701, -456.1401, 228.0701, 456.1401],
[-287.3503, -574.7006, 287.3503, 574.7006]])
]
base_anchors = retina_head.anchor_generator.base_anchors
for i, base_anchor in enumerate(base_anchors):
assert base_anchor.allclose(expected_base_anchors[i])
# check valid flags
expected_valid_pixels = [57600, 14400, 3600, 900, 225]
multi_level_valid_flags = retina_head.anchor_generator.valid_flags(
featmap_sizes, (640, 640), device)
for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
assert single_level_valid_flag.sum() == expected_valid_pixels[i]
# check number of base anchors for each level
assert retina_head.anchor_generator.num_base_anchors == [9, 9, 9, 9, 9]
# check anchor generation
anchors = retina_head.anchor_generator.grid_anchors(featmap_sizes, device)
assert len(anchors) == 5
def test_guided_anchor():
from mmdet.models import build_head
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
# head configs modified from
# configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
bbox_head = dict(
type='GARetinaHead',
num_classes=8,
in_channels=4,
stacked_convs=1,
feat_channels=4,
approx_anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
square_anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[4],
strides=[8, 16, 32, 64, 128]))
ga_retina_head = build_head(bbox_head)
assert ga_retina_head.approx_anchor_generator is not None
# use the featmap sizes in NASFPN setting to test ga_retina_head
featmap_sizes = [(100, 152), (50, 76), (25, 38), (13, 19), (7, 10)]
# check base anchors
expected_approxs = [
torch.Tensor([[-22.6274, -11.3137, 22.6274, 11.3137],
[-28.5088, -14.2544, 28.5088, 14.2544],
[-35.9188, -17.9594, 35.9188, 17.9594],
[-16.0000, -16.0000, 16.0000, 16.0000],
[-20.1587, -20.1587, 20.1587, 20.1587],
[-25.3984, -25.3984, 25.3984, 25.3984],
[-11.3137, -22.6274, 11.3137, 22.6274],
[-14.2544, -28.5088, 14.2544, 28.5088],
[-17.9594, -35.9188, 17.9594, 35.9188]]),
torch.Tensor([[-45.2548, -22.6274, 45.2548, 22.6274],
[-57.0175, -28.5088, 57.0175, 28.5088],
[-71.8376, -35.9188, 71.8376, 35.9188],
[-32.0000, -32.0000, 32.0000, 32.0000],
[-40.3175, -40.3175, 40.3175, 40.3175],
[-50.7968, -50.7968, 50.7968, 50.7968],
[-22.6274, -45.2548, 22.6274, 45.2548],
[-28.5088, -57.0175, 28.5088, 57.0175],
[-35.9188, -71.8376, 35.9188, 71.8376]]),
torch.Tensor([[-90.5097, -45.2548, 90.5097, 45.2548],
[-114.0350, -57.0175, 114.0350, 57.0175],
[-143.6751, -71.8376, 143.6751, 71.8376],
[-64.0000, -64.0000, 64.0000, 64.0000],
[-80.6349, -80.6349, 80.6349, 80.6349],
[-101.5937, -101.5937, 101.5937, 101.5937],
[-45.2548, -90.5097, 45.2548, 90.5097],
[-57.0175, -114.0350, 57.0175, 114.0350],
[-71.8376, -143.6751, 71.8376, 143.6751]]),
torch.Tensor([[-181.0193, -90.5097, 181.0193, 90.5097],
[-228.0701, -114.0350, 228.0701, 114.0350],
[-287.3503, -143.6751, 287.3503, 143.6751],
[-128.0000, -128.0000, 128.0000, 128.0000],
[-161.2699, -161.2699, 161.2699, 161.2699],
[-203.1873, -203.1873, 203.1873, 203.1873],
[-90.5097, -181.0193, 90.5097, 181.0193],
[-114.0350, -228.0701, 114.0350, 228.0701],
[-143.6751, -287.3503, 143.6751, 287.3503]]),
torch.Tensor([[-362.0387, -181.0193, 362.0387, 181.0193],
[-456.1401, -228.0701, 456.1401, 228.0701],
[-574.7006, -287.3503, 574.7006, 287.3503],
[-256.0000, -256.0000, 256.0000, 256.0000],
[-322.5398, -322.5398, 322.5398, 322.5398],
[-406.3747, -406.3747, 406.3747, 406.3747],
[-181.0193, -362.0387, 181.0193, 362.0387],
[-228.0701, -456.1401, 228.0701, 456.1401],
[-287.3503, -574.7006, 287.3503, 574.7006]])
]
approxs = ga_retina_head.approx_anchor_generator.base_anchors
for i, base_anchor in enumerate(approxs):
assert base_anchor.allclose(expected_approxs[i])
# check valid flags
expected_valid_pixels = [136800, 34200, 8550, 2223, 630]
multi_level_valid_flags = ga_retina_head.approx_anchor_generator \
.valid_flags(featmap_sizes, (800, 1216), device)
for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
assert single_level_valid_flag.sum() == expected_valid_pixels[i]
# check number of base anchors for each level
assert ga_retina_head.approx_anchor_generator.num_base_anchors == [
9, 9, 9, 9, 9
]
# check approx generation
squares = ga_retina_head.square_anchor_generator.grid_anchors(
featmap_sizes, device)
assert len(squares) == 5
expected_squares = [
torch.Tensor([[-16., -16., 16., 16.]]),
torch.Tensor([[-32., -32., 32., 32]]),
torch.Tensor([[-64., -64., 64., 64.]]),
torch.Tensor([[-128., -128., 128., 128.]]),
torch.Tensor([[-256., -256., 256., 256.]])
]
squares = ga_retina_head.square_anchor_generator.base_anchors
for i, base_anchor in enumerate(squares):
assert base_anchor.allclose(expected_squares[i])
# square_anchor_generator does not check valid flags
# check number of base anchors for each level
assert (ga_retina_head.square_anchor_generator.num_base_anchors == [
1, 1, 1, 1, 1
])
# check square generation
anchors = ga_retina_head.square_anchor_generator.grid_anchors(
featmap_sizes, device)
assert len(anchors) == 5