File size: 17,744 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""
CommandLine:
    pytest tests/test_utils/test_anchor.py
    xdoctest tests/test_utils/test_anchor.py zero

"""
import torch


def test_standard_anchor_generator():
    from mmdet.core.anchor import build_anchor_generator
    anchor_generator_cfg = dict(
        type='AnchorGenerator',
        scales=[8],
        ratios=[0.5, 1.0, 2.0],
        strides=[4, 8])

    anchor_generator = build_anchor_generator(anchor_generator_cfg)
    assert anchor_generator is not None


def test_strides():
    from mmdet.core import AnchorGenerator
    # Square strides
    self = AnchorGenerator([10], [1.], [1.], [10])
    anchors = self.grid_anchors([(2, 2)], device='cpu')

    expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
                                     [-5., 5., 5., 15.], [5., 5., 15., 15.]])

    assert torch.equal(anchors[0], expected_anchors)

    # Different strides in x and y direction
    self = AnchorGenerator([(10, 20)], [1.], [1.], [10])
    anchors = self.grid_anchors([(2, 2)], device='cpu')

    expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
                                     [-5., 15., 5., 25.], [5., 15., 15., 25.]])

    assert torch.equal(anchors[0], expected_anchors)


def test_ssd_anchor_generator():
    from mmdet.core.anchor import build_anchor_generator
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    anchor_generator_cfg = dict(
        type='SSDAnchorGenerator',
        scale_major=False,
        input_size=300,
        basesize_ratio_range=(0.15, 0.9),
        strides=[8, 16, 32, 64, 100, 300],
        ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])

    featmap_sizes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
    anchor_generator = build_anchor_generator(anchor_generator_cfg)

    # check base anchors
    expected_base_anchors = [
        torch.Tensor([[-6.5000, -6.5000, 14.5000, 14.5000],
                      [-11.3704, -11.3704, 19.3704, 19.3704],
                      [-10.8492, -3.4246, 18.8492, 11.4246],
                      [-3.4246, -10.8492, 11.4246, 18.8492]]),
        torch.Tensor([[-14.5000, -14.5000, 30.5000, 30.5000],
                      [-25.3729, -25.3729, 41.3729, 41.3729],
                      [-23.8198, -7.9099, 39.8198, 23.9099],
                      [-7.9099, -23.8198, 23.9099, 39.8198],
                      [-30.9711, -4.9904, 46.9711, 20.9904],
                      [-4.9904, -30.9711, 20.9904, 46.9711]]),
        torch.Tensor([[-33.5000, -33.5000, 65.5000, 65.5000],
                      [-45.5366, -45.5366, 77.5366, 77.5366],
                      [-54.0036, -19.0018, 86.0036, 51.0018],
                      [-19.0018, -54.0036, 51.0018, 86.0036],
                      [-69.7365, -12.5788, 101.7365, 44.5788],
                      [-12.5788, -69.7365, 44.5788, 101.7365]]),
        torch.Tensor([[-44.5000, -44.5000, 108.5000, 108.5000],
                      [-56.9817, -56.9817, 120.9817, 120.9817],
                      [-76.1873, -22.0937, 140.1873, 86.0937],
                      [-22.0937, -76.1873, 86.0937, 140.1873],
                      [-100.5019, -12.1673, 164.5019, 76.1673],
                      [-12.1673, -100.5019, 76.1673, 164.5019]]),
        torch.Tensor([[-53.5000, -53.5000, 153.5000, 153.5000],
                      [-66.2185, -66.2185, 166.2185, 166.2185],
                      [-96.3711, -23.1855, 196.3711, 123.1855],
                      [-23.1855, -96.3711, 123.1855, 196.3711]]),
        torch.Tensor([[19.5000, 19.5000, 280.5000, 280.5000],
                      [6.6342, 6.6342, 293.3658, 293.3658],
                      [-34.5549, 57.7226, 334.5549, 242.2774],
                      [57.7226, -34.5549, 242.2774, 334.5549]]),
    ]
    base_anchors = anchor_generator.base_anchors
    for i, base_anchor in enumerate(base_anchors):
        assert base_anchor.allclose(expected_base_anchors[i])

    # check valid flags
    expected_valid_pixels = [5776, 2166, 600, 150, 36, 4]
    multi_level_valid_flags = anchor_generator.valid_flags(
        featmap_sizes, (300, 300), device)
    for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
        assert single_level_valid_flag.sum() == expected_valid_pixels[i]

    # check number of base anchors for each level
    assert anchor_generator.num_base_anchors == [4, 6, 6, 6, 4, 4]

    # check anchor generation
    anchors = anchor_generator.grid_anchors(featmap_sizes, device)
    assert len(anchors) == 6


def test_anchor_generator_with_tuples():
    from mmdet.core.anchor import build_anchor_generator
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    anchor_generator_cfg = dict(
        type='SSDAnchorGenerator',
        scale_major=False,
        input_size=300,
        basesize_ratio_range=(0.15, 0.9),
        strides=[8, 16, 32, 64, 100, 300],
        ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])

    featmap_sizes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
    anchor_generator = build_anchor_generator(anchor_generator_cfg)
    anchors = anchor_generator.grid_anchors(featmap_sizes, device)

    anchor_generator_cfg_tuples = dict(
        type='SSDAnchorGenerator',
        scale_major=False,
        input_size=300,
        basesize_ratio_range=(0.15, 0.9),
        strides=[(8, 8), (16, 16), (32, 32), (64, 64), (100, 100), (300, 300)],
        ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]])

    anchor_generator_tuples = build_anchor_generator(
        anchor_generator_cfg_tuples)
    anchors_tuples = anchor_generator_tuples.grid_anchors(
        featmap_sizes, device)
    for anchor, anchor_tuples in zip(anchors, anchors_tuples):
        assert torch.equal(anchor, anchor_tuples)


def test_yolo_anchor_generator():
    from mmdet.core.anchor import build_anchor_generator
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    anchor_generator_cfg = dict(
        type='YOLOAnchorGenerator',
        strides=[32, 16, 8],
        base_sizes=[
            [(116, 90), (156, 198), (373, 326)],
            [(30, 61), (62, 45), (59, 119)],
            [(10, 13), (16, 30), (33, 23)],
        ])

    featmap_sizes = [(14, 18), (28, 36), (56, 72)]
    anchor_generator = build_anchor_generator(anchor_generator_cfg)

    # check base anchors
    expected_base_anchors = [
        torch.Tensor([[-42.0000, -29.0000, 74.0000, 61.0000],
                      [-62.0000, -83.0000, 94.0000, 115.0000],
                      [-170.5000, -147.0000, 202.5000, 179.0000]]),
        torch.Tensor([[-7.0000, -22.5000, 23.0000, 38.5000],
                      [-23.0000, -14.5000, 39.0000, 30.5000],
                      [-21.5000, -51.5000, 37.5000, 67.5000]]),
        torch.Tensor([[-1.0000, -2.5000, 9.0000, 10.5000],
                      [-4.0000, -11.0000, 12.0000, 19.0000],
                      [-12.5000, -7.5000, 20.5000, 15.5000]])
    ]
    base_anchors = anchor_generator.base_anchors
    for i, base_anchor in enumerate(base_anchors):
        assert base_anchor.allclose(expected_base_anchors[i])

    # check number of base anchors for each level
    assert anchor_generator.num_base_anchors == [3, 3, 3]

    # check anchor generation
    anchors = anchor_generator.grid_anchors(featmap_sizes, device)
    assert len(anchors) == 3


def test_retina_anchor():
    from mmdet.models import build_head
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'

    # head configs modified from
    # configs/nas_fpn/retinanet_r50_fpn_crop640_50e.py
    bbox_head = dict(
        type='RetinaSepBNHead',
        num_classes=4,
        num_ins=5,
        in_channels=4,
        stacked_convs=1,
        feat_channels=4,
        anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=4,
            scales_per_octave=3,
            ratios=[0.5, 1.0, 2.0],
            strides=[8, 16, 32, 64, 128]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]))

    retina_head = build_head(bbox_head)
    assert retina_head.anchor_generator is not None

    # use the featmap sizes in NASFPN setting to test retina head
    featmap_sizes = [(80, 80), (40, 40), (20, 20), (10, 10), (5, 5)]
    # check base anchors
    expected_base_anchors = [
        torch.Tensor([[-22.6274, -11.3137, 22.6274, 11.3137],
                      [-28.5088, -14.2544, 28.5088, 14.2544],
                      [-35.9188, -17.9594, 35.9188, 17.9594],
                      [-16.0000, -16.0000, 16.0000, 16.0000],
                      [-20.1587, -20.1587, 20.1587, 20.1587],
                      [-25.3984, -25.3984, 25.3984, 25.3984],
                      [-11.3137, -22.6274, 11.3137, 22.6274],
                      [-14.2544, -28.5088, 14.2544, 28.5088],
                      [-17.9594, -35.9188, 17.9594, 35.9188]]),
        torch.Tensor([[-45.2548, -22.6274, 45.2548, 22.6274],
                      [-57.0175, -28.5088, 57.0175, 28.5088],
                      [-71.8376, -35.9188, 71.8376, 35.9188],
                      [-32.0000, -32.0000, 32.0000, 32.0000],
                      [-40.3175, -40.3175, 40.3175, 40.3175],
                      [-50.7968, -50.7968, 50.7968, 50.7968],
                      [-22.6274, -45.2548, 22.6274, 45.2548],
                      [-28.5088, -57.0175, 28.5088, 57.0175],
                      [-35.9188, -71.8376, 35.9188, 71.8376]]),
        torch.Tensor([[-90.5097, -45.2548, 90.5097, 45.2548],
                      [-114.0350, -57.0175, 114.0350, 57.0175],
                      [-143.6751, -71.8376, 143.6751, 71.8376],
                      [-64.0000, -64.0000, 64.0000, 64.0000],
                      [-80.6349, -80.6349, 80.6349, 80.6349],
                      [-101.5937, -101.5937, 101.5937, 101.5937],
                      [-45.2548, -90.5097, 45.2548, 90.5097],
                      [-57.0175, -114.0350, 57.0175, 114.0350],
                      [-71.8376, -143.6751, 71.8376, 143.6751]]),
        torch.Tensor([[-181.0193, -90.5097, 181.0193, 90.5097],
                      [-228.0701, -114.0350, 228.0701, 114.0350],
                      [-287.3503, -143.6751, 287.3503, 143.6751],
                      [-128.0000, -128.0000, 128.0000, 128.0000],
                      [-161.2699, -161.2699, 161.2699, 161.2699],
                      [-203.1873, -203.1873, 203.1873, 203.1873],
                      [-90.5097, -181.0193, 90.5097, 181.0193],
                      [-114.0350, -228.0701, 114.0350, 228.0701],
                      [-143.6751, -287.3503, 143.6751, 287.3503]]),
        torch.Tensor([[-362.0387, -181.0193, 362.0387, 181.0193],
                      [-456.1401, -228.0701, 456.1401, 228.0701],
                      [-574.7006, -287.3503, 574.7006, 287.3503],
                      [-256.0000, -256.0000, 256.0000, 256.0000],
                      [-322.5398, -322.5398, 322.5398, 322.5398],
                      [-406.3747, -406.3747, 406.3747, 406.3747],
                      [-181.0193, -362.0387, 181.0193, 362.0387],
                      [-228.0701, -456.1401, 228.0701, 456.1401],
                      [-287.3503, -574.7006, 287.3503, 574.7006]])
    ]
    base_anchors = retina_head.anchor_generator.base_anchors
    for i, base_anchor in enumerate(base_anchors):
        assert base_anchor.allclose(expected_base_anchors[i])

    # check valid flags
    expected_valid_pixels = [57600, 14400, 3600, 900, 225]
    multi_level_valid_flags = retina_head.anchor_generator.valid_flags(
        featmap_sizes, (640, 640), device)
    for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
        assert single_level_valid_flag.sum() == expected_valid_pixels[i]

    # check number of base anchors for each level
    assert retina_head.anchor_generator.num_base_anchors == [9, 9, 9, 9, 9]

    # check anchor generation
    anchors = retina_head.anchor_generator.grid_anchors(featmap_sizes, device)
    assert len(anchors) == 5


def test_guided_anchor():
    from mmdet.models import build_head
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'
    # head configs modified from
    # configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
    bbox_head = dict(
        type='GARetinaHead',
        num_classes=8,
        in_channels=4,
        stacked_convs=1,
        feat_channels=4,
        approx_anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=4,
            scales_per_octave=3,
            ratios=[0.5, 1.0, 2.0],
            strides=[8, 16, 32, 64, 128]),
        square_anchor_generator=dict(
            type='AnchorGenerator',
            ratios=[1.0],
            scales=[4],
            strides=[8, 16, 32, 64, 128]))

    ga_retina_head = build_head(bbox_head)
    assert ga_retina_head.approx_anchor_generator is not None

    # use the featmap sizes in NASFPN setting to test ga_retina_head
    featmap_sizes = [(100, 152), (50, 76), (25, 38), (13, 19), (7, 10)]
    # check base anchors
    expected_approxs = [
        torch.Tensor([[-22.6274, -11.3137, 22.6274, 11.3137],
                      [-28.5088, -14.2544, 28.5088, 14.2544],
                      [-35.9188, -17.9594, 35.9188, 17.9594],
                      [-16.0000, -16.0000, 16.0000, 16.0000],
                      [-20.1587, -20.1587, 20.1587, 20.1587],
                      [-25.3984, -25.3984, 25.3984, 25.3984],
                      [-11.3137, -22.6274, 11.3137, 22.6274],
                      [-14.2544, -28.5088, 14.2544, 28.5088],
                      [-17.9594, -35.9188, 17.9594, 35.9188]]),
        torch.Tensor([[-45.2548, -22.6274, 45.2548, 22.6274],
                      [-57.0175, -28.5088, 57.0175, 28.5088],
                      [-71.8376, -35.9188, 71.8376, 35.9188],
                      [-32.0000, -32.0000, 32.0000, 32.0000],
                      [-40.3175, -40.3175, 40.3175, 40.3175],
                      [-50.7968, -50.7968, 50.7968, 50.7968],
                      [-22.6274, -45.2548, 22.6274, 45.2548],
                      [-28.5088, -57.0175, 28.5088, 57.0175],
                      [-35.9188, -71.8376, 35.9188, 71.8376]]),
        torch.Tensor([[-90.5097, -45.2548, 90.5097, 45.2548],
                      [-114.0350, -57.0175, 114.0350, 57.0175],
                      [-143.6751, -71.8376, 143.6751, 71.8376],
                      [-64.0000, -64.0000, 64.0000, 64.0000],
                      [-80.6349, -80.6349, 80.6349, 80.6349],
                      [-101.5937, -101.5937, 101.5937, 101.5937],
                      [-45.2548, -90.5097, 45.2548, 90.5097],
                      [-57.0175, -114.0350, 57.0175, 114.0350],
                      [-71.8376, -143.6751, 71.8376, 143.6751]]),
        torch.Tensor([[-181.0193, -90.5097, 181.0193, 90.5097],
                      [-228.0701, -114.0350, 228.0701, 114.0350],
                      [-287.3503, -143.6751, 287.3503, 143.6751],
                      [-128.0000, -128.0000, 128.0000, 128.0000],
                      [-161.2699, -161.2699, 161.2699, 161.2699],
                      [-203.1873, -203.1873, 203.1873, 203.1873],
                      [-90.5097, -181.0193, 90.5097, 181.0193],
                      [-114.0350, -228.0701, 114.0350, 228.0701],
                      [-143.6751, -287.3503, 143.6751, 287.3503]]),
        torch.Tensor([[-362.0387, -181.0193, 362.0387, 181.0193],
                      [-456.1401, -228.0701, 456.1401, 228.0701],
                      [-574.7006, -287.3503, 574.7006, 287.3503],
                      [-256.0000, -256.0000, 256.0000, 256.0000],
                      [-322.5398, -322.5398, 322.5398, 322.5398],
                      [-406.3747, -406.3747, 406.3747, 406.3747],
                      [-181.0193, -362.0387, 181.0193, 362.0387],
                      [-228.0701, -456.1401, 228.0701, 456.1401],
                      [-287.3503, -574.7006, 287.3503, 574.7006]])
    ]
    approxs = ga_retina_head.approx_anchor_generator.base_anchors
    for i, base_anchor in enumerate(approxs):
        assert base_anchor.allclose(expected_approxs[i])

    # check valid flags
    expected_valid_pixels = [136800, 34200, 8550, 2223, 630]
    multi_level_valid_flags = ga_retina_head.approx_anchor_generator \
        .valid_flags(featmap_sizes, (800, 1216), device)
    for i, single_level_valid_flag in enumerate(multi_level_valid_flags):
        assert single_level_valid_flag.sum() == expected_valid_pixels[i]

    # check number of base anchors for each level
    assert ga_retina_head.approx_anchor_generator.num_base_anchors == [
        9, 9, 9, 9, 9
    ]

    # check approx generation
    squares = ga_retina_head.square_anchor_generator.grid_anchors(
        featmap_sizes, device)
    assert len(squares) == 5

    expected_squares = [
        torch.Tensor([[-16., -16., 16., 16.]]),
        torch.Tensor([[-32., -32., 32., 32]]),
        torch.Tensor([[-64., -64., 64., 64.]]),
        torch.Tensor([[-128., -128., 128., 128.]]),
        torch.Tensor([[-256., -256., 256., 256.]])
    ]
    squares = ga_retina_head.square_anchor_generator.base_anchors
    for i, base_anchor in enumerate(squares):
        assert base_anchor.allclose(expected_squares[i])

    # square_anchor_generator does not check valid flags
    # check number of base anchors for each level
    assert (ga_retina_head.square_anchor_generator.num_base_anchors == [
        1, 1, 1, 1, 1
    ])

    # check square generation
    anchors = ga_retina_head.square_anchor_generator.grid_anchors(
        featmap_sizes, device)
    assert len(anchors) == 5