|
import mmcv |
|
import torch |
|
|
|
from mmdet.models.dense_heads import FSAFHead |
|
|
|
|
|
def test_fsaf_head_loss(): |
|
"""Tests anchor head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
|
|
cfg = dict( |
|
reg_decoded_bbox=True, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
octave_base_scale=1, |
|
scales_per_octave=1, |
|
ratios=[1.0], |
|
strides=[8, 16, 32, 64, 128]), |
|
bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0, |
|
reduction='none'), |
|
loss_bbox=dict( |
|
type='IoULoss', eps=1e-6, loss_weight=1.0, reduction='none')) |
|
|
|
train_cfg = mmcv.Config( |
|
dict( |
|
assigner=dict( |
|
type='CenterRegionAssigner', |
|
pos_scale=0.2, |
|
neg_scale=0.2, |
|
min_pos_iof=0.01), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False)) |
|
head = FSAFHead(num_classes=4, in_channels=1, train_cfg=train_cfg, **cfg) |
|
if torch.cuda.is_available(): |
|
head.cuda() |
|
|
|
feat = [ |
|
torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).cuda() |
|
for i in range(len(head.anchor_generator.strides)) |
|
] |
|
cls_scores, bbox_preds = head.forward(feat) |
|
gt_bboxes_ignore = None |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]).cuda(), |
|
] |
|
gt_labels = [torch.LongTensor([2]).cuda()] |
|
one_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, |
|
img_metas, gt_bboxes_ignore) |
|
onegt_cls_loss = sum(one_gt_losses['loss_cls']) |
|
onegt_box_loss = sum(one_gt_losses['loss_bbox']) |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_box_loss.item() > 0, 'box loss should be non-zero' |
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4)).cuda()] |
|
gt_labels = [torch.LongTensor([]).cuda()] |
|
|
|
empty_gt_losses = head.loss(cls_scores, bbox_preds, gt_bboxes, |
|
gt_labels, img_metas, gt_bboxes_ignore) |
|
|
|
|
|
empty_cls_loss = sum(empty_gt_losses['loss_cls']) |
|
empty_box_loss = sum(empty_gt_losses['loss_bbox']) |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_box_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
|