|
from torch.nn.modules import GroupNorm |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmdet.models.backbones.res2net import Bottle2neck |
|
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck |
|
from mmdet.models.backbones.resnext import Bottleneck as BottleneckX |
|
from mmdet.models.utils import SimplifiedBasicBlock |
|
|
|
|
|
def is_block(modules): |
|
"""Check if is ResNet building block.""" |
|
if isinstance(modules, (BasicBlock, Bottleneck, BottleneckX, Bottle2neck, |
|
SimplifiedBasicBlock)): |
|
return True |
|
return False |
|
|
|
|
|
def is_norm(modules): |
|
"""Check if is one of the norms.""" |
|
if isinstance(modules, (GroupNorm, _BatchNorm)): |
|
return True |
|
return False |
|
|
|
|
|
def check_norm_state(modules, train_state): |
|
"""Check if norm layer is in correct train state.""" |
|
for mod in modules: |
|
if isinstance(mod, _BatchNorm): |
|
if mod.training != train_state: |
|
return False |
|
return True |
|
|