|
import pytest |
|
import torch |
|
|
|
from mmdet.models.backbones import TridentResNet |
|
from mmdet.models.backbones.trident_resnet import TridentBottleneck |
|
|
|
|
|
def test_trident_resnet_bottleneck(): |
|
trident_dilations = (1, 2, 3) |
|
test_branch_idx = 1 |
|
concat_output = True |
|
trident_build_config = (trident_dilations, test_branch_idx, concat_output) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=64, style='tensorflow') |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv4') |
|
] |
|
TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
|
|
with pytest.raises(KeyError): |
|
|
|
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')] |
|
TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
|
|
|
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, with_cp=True) |
|
assert block.with_cp |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
block = TridentBottleneck( |
|
*trident_build_config, |
|
inplanes=64, |
|
planes=64, |
|
stride=2, |
|
style='pytorch') |
|
assert block.conv1.stride == (1, 1) |
|
assert block.conv2.stride == (2, 2) |
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=64, stride=2, style='caffe') |
|
assert block.conv1.stride == (2, 2) |
|
assert block.conv2.stride == (1, 1) |
|
|
|
|
|
block = TridentBottleneck(*trident_build_config, inplanes=64, planes=16) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
assert block.context_block.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2') |
|
] |
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
assert block.gen_attention_block.in_channels == 16 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2'), |
|
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
assert block.gen_attention_block.in_channels == 16 |
|
assert block.nonlocal_block.in_channels == 16 |
|
assert block.context_block.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), |
|
position='after_conv2'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), |
|
position='after_conv3'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3), |
|
position='after_conv3') |
|
] |
|
block = TridentBottleneck( |
|
*trident_build_config, inplanes=64, planes=16, plugins=plugins) |
|
assert block.context_block1.in_channels == 16 |
|
assert block.context_block2.in_channels == 64 |
|
assert block.context_block3.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56]) |
|
|
|
|
|
def test_trident_resnet_backbone(): |
|
tridentresnet_config = dict( |
|
num_branch=3, |
|
test_branch_idx=1, |
|
strides=(1, 2, 2), |
|
dilations=(1, 1, 1), |
|
trident_dilations=(1, 2, 3), |
|
out_indices=(2, ), |
|
) |
|
"""Test tridentresnet backbone.""" |
|
with pytest.raises(AssertionError): |
|
|
|
TridentResNet(18, **tridentresnet_config) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
TridentResNet(50, num_stages=4, **tridentresnet_config) |
|
|
|
model = TridentResNet(50, num_stages=3, **tridentresnet_config) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 1 |
|
assert feat[0].shape == torch.Size([3, 1024, 14, 14]) |
|
|