ZJF-Thunder
添加文件
e26e560
import pytest
import torch
from mmdet.models.backbones import TridentResNet
from mmdet.models.backbones.trident_resnet import TridentBottleneck
def test_trident_resnet_bottleneck():
trident_dilations = (1, 2, 3)
test_branch_idx = 1
concat_output = True
trident_build_config = (trident_dilations, test_branch_idx, concat_output)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, style='tensorflow')
with pytest.raises(AssertionError):
# Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv4')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(AssertionError):
# Need to specify different postfix to avoid duplicate plugin name
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(KeyError):
# Plugin type is not supported
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
# Test Bottleneck with checkpoint forward
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck style
block = TridentBottleneck(
*trident_build_config,
inplanes=64,
planes=64,
stride=2,
style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck forward
block = TridentBottleneck(*trident_build_config, inplanes=64, planes=16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
assert block.nonlocal_block.in_channels == 16
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
# conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block1.in_channels == 16
assert block.context_block2.in_channels == 64
assert block.context_block3.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
def test_trident_resnet_backbone():
tridentresnet_config = dict(
num_branch=3,
test_branch_idx=1,
strides=(1, 2, 2),
dilations=(1, 1, 1),
trident_dilations=(1, 2, 3),
out_indices=(2, ),
)
"""Test tridentresnet backbone."""
with pytest.raises(AssertionError):
# TridentResNet depth should be in [50, 101, 152]
TridentResNet(18, **tridentresnet_config)
with pytest.raises(AssertionError):
# In TridentResNet: num_stages == 3
TridentResNet(50, num_stages=4, **tridentresnet_config)
model = TridentResNet(50, num_stages=3, **tridentresnet_config)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([3, 1024, 14, 14])