File size: 6,353 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pytest
import torch

from mmdet.models.backbones import TridentResNet
from mmdet.models.backbones.trident_resnet import TridentBottleneck


def test_trident_resnet_bottleneck():
    trident_dilations = (1, 2, 3)
    test_branch_idx = 1
    concat_output = True
    trident_build_config = (trident_dilations, test_branch_idx, concat_output)

    with pytest.raises(AssertionError):
        # Style must be in ['pytorch', 'caffe']
        TridentBottleneck(
            *trident_build_config, inplanes=64, planes=64, style='tensorflow')

    with pytest.raises(AssertionError):
        # Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv4')
        ]
        TridentBottleneck(
            *trident_build_config, inplanes=64, planes=16, plugins=plugins)

    with pytest.raises(AssertionError):
        # Need to specify different postfix to avoid duplicate plugin name
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3'),
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3')
        ]
        TridentBottleneck(
            *trident_build_config, inplanes=64, planes=16, plugins=plugins)

    with pytest.raises(KeyError):
        # Plugin type is not supported
        plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
        TridentBottleneck(
            *trident_build_config, inplanes=64, planes=16, plugins=plugins)

    # Test Bottleneck with checkpoint forward
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=16, with_cp=True)
    assert block.with_cp
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])

    # Test Bottleneck style
    block = TridentBottleneck(
        *trident_build_config,
        inplanes=64,
        planes=64,
        stride=2,
        style='pytorch')
    assert block.conv1.stride == (1, 1)
    assert block.conv2.stride == (2, 2)
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=64, stride=2, style='caffe')
    assert block.conv1.stride == (2, 2)
    assert block.conv2.stride == (1, 1)

    # Test Bottleneck forward
    block = TridentBottleneck(*trident_build_config, inplanes=64, planes=16)
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])

    # Test Bottleneck with 1 ContextBlock after conv3
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            position='after_conv3')
    ]
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=16, plugins=plugins)
    assert block.context_block.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])

    # Test Bottleneck with 1 GeneralizedAttention after conv2
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            position='after_conv2')
    ]
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=16, plugins=plugins)
    assert block.gen_attention_block.in_channels == 16
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])

    # Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
    # after conv2, 1 ContextBlock after conv3
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            position='after_conv2'),
        dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            position='after_conv3')
    ]
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=16, plugins=plugins)
    assert block.gen_attention_block.in_channels == 16
    assert block.nonlocal_block.in_channels == 16
    assert block.context_block.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])

    # Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
    # conv3
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
            position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
            position='after_conv3'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
            position='after_conv3')
    ]
    block = TridentBottleneck(
        *trident_build_config, inplanes=64, planes=16, plugins=plugins)
    assert block.context_block1.in_channels == 16
    assert block.context_block2.in_channels == 64
    assert block.context_block3.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])


def test_trident_resnet_backbone():
    tridentresnet_config = dict(
        num_branch=3,
        test_branch_idx=1,
        strides=(1, 2, 2),
        dilations=(1, 1, 1),
        trident_dilations=(1, 2, 3),
        out_indices=(2, ),
    )
    """Test tridentresnet backbone."""
    with pytest.raises(AssertionError):
        # TridentResNet depth should be in [50, 101, 152]
        TridentResNet(18, **tridentresnet_config)

    with pytest.raises(AssertionError):
        # In TridentResNet: num_stages == 3
        TridentResNet(50, num_stages=4, **tridentresnet_config)

    model = TridentResNet(50, num_stages=3, **tridentresnet_config)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 1
    assert feat[0].shape == torch.Size([3, 1024, 14, 14])