File size: 6,353 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import pytest
import torch
from mmdet.models.backbones import TridentResNet
from mmdet.models.backbones.trident_resnet import TridentBottleneck
def test_trident_resnet_bottleneck():
trident_dilations = (1, 2, 3)
test_branch_idx = 1
concat_output = True
trident_build_config = (trident_dilations, test_branch_idx, concat_output)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, style='tensorflow')
with pytest.raises(AssertionError):
# Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv4')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(AssertionError):
# Need to specify different postfix to avoid duplicate plugin name
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(KeyError):
# Plugin type is not supported
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
# Test Bottleneck with checkpoint forward
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck style
block = TridentBottleneck(
*trident_build_config,
inplanes=64,
planes=64,
stride=2,
style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck forward
block = TridentBottleneck(*trident_build_config, inplanes=64, planes=16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
assert block.nonlocal_block.in_channels == 16
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
# conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block1.in_channels == 16
assert block.context_block2.in_channels == 64
assert block.context_block3.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
def test_trident_resnet_backbone():
tridentresnet_config = dict(
num_branch=3,
test_branch_idx=1,
strides=(1, 2, 2),
dilations=(1, 1, 1),
trident_dilations=(1, 2, 3),
out_indices=(2, ),
)
"""Test tridentresnet backbone."""
with pytest.raises(AssertionError):
# TridentResNet depth should be in [50, 101, 152]
TridentResNet(18, **tridentresnet_config)
with pytest.raises(AssertionError):
# In TridentResNet: num_stages == 3
TridentResNet(50, num_stages=4, **tridentresnet_config)
model = TridentResNet(50, num_stages=3, **tridentresnet_config)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([3, 1024, 14, 14])
|