ZJF-Thunder
添加文件
e26e560
import pytest
import torch
from mmdet.models.backbones import ResNeSt
from mmdet.models.backbones.resnest import Bottleneck as BottleneckS
def test_resnest_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow')
# Test ResNeSt Bottleneck structure
block = BottleneckS(
64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch')
assert block.avd_layer.stride == 2
assert block.conv2.channels == 256
# Test ResNeSt Bottleneck forward
block = BottleneckS(64, 16, radix=2, reduction_factor=4)
x = torch.randn(2, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([2, 64, 56, 56])
def test_resnest_backbone():
with pytest.raises(KeyError):
# ResNeSt depth should be in [50, 101, 152, 200]
ResNeSt(depth=18)
# Test ResNeSt with radix 2, reduction_factor 4
model = ResNeSt(
depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(2, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([2, 256, 56, 56])
assert feat[1].shape == torch.Size([2, 512, 28, 28])
assert feat[2].shape == torch.Size([2, 1024, 14, 14])
assert feat[3].shape == torch.Size([2, 2048, 7, 7])