|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init |
|
from mmcv.ops import DeformConv2d |
|
from mmcv.runner import force_fp32 |
|
|
|
from mmdet.core import (bbox2distance, bbox_overlaps, build_anchor_generator, |
|
build_assigner, build_sampler, distance2bbox, |
|
multi_apply, multiclass_nms, reduce_mean) |
|
from ..builder import HEADS, build_loss |
|
from .atss_head import ATSSHead |
|
from .fcos_head import FCOSHead |
|
|
|
INF = 1e8 |
|
|
|
|
|
@HEADS.register_module() |
|
class VFNetHead(ATSSHead, FCOSHead): |
|
"""Head of `VarifocalNet (VFNet): An IoU-aware Dense Object |
|
Detector.<https://arxiv.org/abs/2008.13367>`_. |
|
|
|
The VFNet predicts IoU-aware classification scores which mix the |
|
object presence confidence and object localization accuracy as the |
|
detection score. It is built on the FCOS architecture and uses ATSS |
|
for defining positive/negative training examples. The VFNet is trained |
|
with Varifocal Loss and empolys star-shaped deformable convolution to |
|
extract features for a bbox. |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple |
|
level points. |
|
center_sampling (bool): If true, use center sampling. Default: False. |
|
center_sample_radius (float): Radius of center sampling. Default: 1.5. |
|
sync_num_pos (bool): If true, synchronize the number of positive |
|
examples across GPUs. Default: True |
|
gradient_mul (float): The multiplier to gradients from bbox refinement |
|
and recognition. Default: 0.1. |
|
bbox_norm_type (str): The bbox normalization type, 'reg_denom' or |
|
'stride'. Default: reg_denom |
|
loss_cls_fl (dict): Config of focal loss. |
|
use_vfl (bool): If true, use varifocal loss for training. |
|
Default: True. |
|
loss_cls (dict): Config of varifocal loss. |
|
loss_bbox (dict): Config of localization loss, GIoU Loss. |
|
loss_bbox (dict): Config of localization refinement loss, GIoU Loss. |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: norm_cfg=dict(type='GN', num_groups=32, |
|
requires_grad=True). |
|
use_atss (bool): If true, use ATSS to define positive/negative |
|
examples. Default: True. |
|
anchor_generator (dict): Config of anchor generator for ATSS. |
|
|
|
Example: |
|
>>> self = VFNetHead(11, 7) |
|
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] |
|
>>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats) |
|
>>> assert len(cls_score) == len(self.scales) |
|
""" |
|
|
|
def __init__(self, |
|
num_classes, |
|
in_channels, |
|
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), |
|
(512, INF)), |
|
center_sampling=False, |
|
center_sample_radius=1.5, |
|
sync_num_pos=True, |
|
gradient_mul=0.1, |
|
bbox_norm_type='reg_denom', |
|
loss_cls_fl=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
use_vfl=True, |
|
loss_cls=dict( |
|
type='VarifocalLoss', |
|
use_sigmoid=True, |
|
alpha=0.75, |
|
gamma=2.0, |
|
iou_weighted=True, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=1.5), |
|
loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0), |
|
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), |
|
use_atss=True, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
ratios=[1.0], |
|
octave_base_scale=8, |
|
scales_per_octave=1, |
|
center_offset=0.0, |
|
strides=[8, 16, 32, 64, 128]), |
|
**kwargs): |
|
|
|
self.num_dconv_points = 9 |
|
self.dcn_kernel = int(np.sqrt(self.num_dconv_points)) |
|
self.dcn_pad = int((self.dcn_kernel - 1) / 2) |
|
dcn_base = np.arange(-self.dcn_pad, |
|
self.dcn_pad + 1).astype(np.float64) |
|
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) |
|
dcn_base_x = np.tile(dcn_base, self.dcn_kernel) |
|
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( |
|
(-1)) |
|
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) |
|
|
|
super(FCOSHead, self).__init__( |
|
num_classes, in_channels, norm_cfg=norm_cfg, **kwargs) |
|
self.regress_ranges = regress_ranges |
|
self.reg_denoms = [ |
|
regress_range[-1] for regress_range in regress_ranges |
|
] |
|
self.reg_denoms[-1] = self.reg_denoms[-2] * 2 |
|
self.center_sampling = center_sampling |
|
self.center_sample_radius = center_sample_radius |
|
self.sync_num_pos = sync_num_pos |
|
self.bbox_norm_type = bbox_norm_type |
|
self.gradient_mul = gradient_mul |
|
self.use_vfl = use_vfl |
|
if self.use_vfl: |
|
self.loss_cls = build_loss(loss_cls) |
|
else: |
|
self.loss_cls = build_loss(loss_cls_fl) |
|
self.loss_bbox = build_loss(loss_bbox) |
|
self.loss_bbox_refine = build_loss(loss_bbox_refine) |
|
|
|
|
|
self.use_atss = use_atss |
|
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) |
|
self.anchor_generator = build_anchor_generator(anchor_generator) |
|
self.anchor_center_offset = anchor_generator['center_offset'] |
|
self.num_anchors = self.anchor_generator.num_base_anchors[0] |
|
self.sampling = False |
|
if self.train_cfg: |
|
self.assigner = build_assigner(self.train_cfg.assigner) |
|
sampler_cfg = dict(type='PseudoSampler') |
|
self.sampler = build_sampler(sampler_cfg, context=self) |
|
|
|
def _init_layers(self): |
|
"""Initialize layers of the head.""" |
|
super(FCOSHead, self)._init_cls_convs() |
|
super(FCOSHead, self)._init_reg_convs() |
|
self.relu = nn.ReLU(inplace=True) |
|
self.vfnet_reg_conv = ConvModule( |
|
self.feat_channels, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
bias=self.conv_bias) |
|
self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) |
|
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) |
|
|
|
self.vfnet_reg_refine_dconv = DeformConv2d( |
|
self.feat_channels, |
|
self.feat_channels, |
|
self.dcn_kernel, |
|
1, |
|
padding=self.dcn_pad) |
|
self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1) |
|
self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides]) |
|
|
|
self.vfnet_cls_dconv = DeformConv2d( |
|
self.feat_channels, |
|
self.feat_channels, |
|
self.dcn_kernel, |
|
1, |
|
padding=self.dcn_pad) |
|
self.vfnet_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
|
|
def init_weights(self): |
|
"""Initialize weights of the head.""" |
|
for m in self.cls_convs: |
|
if isinstance(m.conv, nn.Conv2d): |
|
normal_init(m.conv, std=0.01) |
|
for m in self.reg_convs: |
|
if isinstance(m.conv, nn.Conv2d): |
|
normal_init(m.conv, std=0.01) |
|
normal_init(self.vfnet_reg_conv.conv, std=0.01) |
|
normal_init(self.vfnet_reg, std=0.01) |
|
normal_init(self.vfnet_reg_refine_dconv, std=0.01) |
|
normal_init(self.vfnet_reg_refine, std=0.01) |
|
normal_init(self.vfnet_cls_dconv, std=0.01) |
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.vfnet_cls, std=0.01, bias=bias_cls) |
|
|
|
def forward(self, feats): |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
feats (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: |
|
cls_scores (list[Tensor]): Box iou-aware scores for each scale |
|
level, each is a 4D-tensor, the channel number is |
|
num_points * num_classes. |
|
bbox_preds (list[Tensor]): Box offsets for each |
|
scale level, each is a 4D-tensor, the channel number is |
|
num_points * 4. |
|
bbox_preds_refine (list[Tensor]): Refined Box offsets for |
|
each scale level, each is a 4D-tensor, the channel |
|
number is num_points * 4. |
|
""" |
|
return multi_apply(self.forward_single, feats, self.scales, |
|
self.scales_refine, self.strides, self.reg_denoms) |
|
|
|
def forward_single(self, x, scale, scale_refine, stride, reg_denom): |
|
"""Forward features of a single scale level. |
|
|
|
Args: |
|
x (Tensor): FPN feature maps of the specified stride. |
|
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize |
|
the bbox prediction. |
|
scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to |
|
resize the refined bbox prediction. |
|
stride (int): The corresponding stride for feature maps, |
|
used to normalize the bbox prediction when |
|
bbox_norm_type = 'stride'. |
|
reg_denom (int): The corresponding regression range for feature |
|
maps, only used to normalize the bbox prediction when |
|
bbox_norm_type = 'reg_denom'. |
|
|
|
Returns: |
|
tuple: iou-aware cls scores for each box, bbox predictions and |
|
refined bbox predictions of input feature maps. |
|
""" |
|
cls_feat = x |
|
reg_feat = x |
|
|
|
for cls_layer in self.cls_convs: |
|
cls_feat = cls_layer(cls_feat) |
|
|
|
for reg_layer in self.reg_convs: |
|
reg_feat = reg_layer(reg_feat) |
|
|
|
|
|
reg_feat_init = self.vfnet_reg_conv(reg_feat) |
|
if self.bbox_norm_type == 'reg_denom': |
|
bbox_pred = scale( |
|
self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom |
|
elif self.bbox_norm_type == 'stride': |
|
bbox_pred = scale( |
|
self.vfnet_reg(reg_feat_init)).float().exp() * stride |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul, |
|
stride).to(reg_feat.dtype) |
|
|
|
|
|
reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset)) |
|
bbox_pred_refine = scale_refine( |
|
self.vfnet_reg_refine(reg_feat)).float().exp() |
|
bbox_pred_refine = bbox_pred_refine * bbox_pred.detach() |
|
|
|
|
|
cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset)) |
|
cls_score = self.vfnet_cls(cls_feat) |
|
|
|
return cls_score, bbox_pred, bbox_pred_refine |
|
|
|
def star_dcn_offset(self, bbox_pred, gradient_mul, stride): |
|
"""Compute the star deformable conv offsets. |
|
|
|
Args: |
|
bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b). |
|
gradient_mul (float): Gradient multiplier. |
|
stride (int): The corresponding stride for feature maps, |
|
used to project the bbox onto the feature map. |
|
|
|
Returns: |
|
dcn_offsets (Tensor): The offsets for deformable convolution. |
|
""" |
|
dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred) |
|
bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \ |
|
gradient_mul * bbox_pred |
|
|
|
bbox_pred_grad_mul = bbox_pred_grad_mul / stride |
|
N, C, H, W = bbox_pred.size() |
|
|
|
x1 = bbox_pred_grad_mul[:, 0, :, :] |
|
y1 = bbox_pred_grad_mul[:, 1, :, :] |
|
x2 = bbox_pred_grad_mul[:, 2, :, :] |
|
y2 = bbox_pred_grad_mul[:, 3, :, :] |
|
bbox_pred_grad_mul_offset = bbox_pred.new_zeros( |
|
N, 2 * self.num_dconv_points, H, W) |
|
bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 |
|
bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 |
|
bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 |
|
bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 |
|
bbox_pred_grad_mul_offset[:, 5, :, :] = x2 |
|
bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 |
|
bbox_pred_grad_mul_offset[:, 11, :, :] = x2 |
|
bbox_pred_grad_mul_offset[:, 12, :, :] = y2 |
|
bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 |
|
bbox_pred_grad_mul_offset[:, 14, :, :] = y2 |
|
bbox_pred_grad_mul_offset[:, 16, :, :] = y2 |
|
bbox_pred_grad_mul_offset[:, 17, :, :] = x2 |
|
dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset |
|
|
|
return dcn_offset |
|
|
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine')) |
|
def loss(self, |
|
cls_scores, |
|
bbox_preds, |
|
bbox_preds_refine, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=None): |
|
"""Compute loss of the head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box iou-aware scores for each scale |
|
level, each is a 4D-tensor, the channel number is |
|
num_points * num_classes. |
|
bbox_preds (list[Tensor]): Box offsets for each |
|
scale level, each is a 4D-tensor, the channel number is |
|
num_points * 4. |
|
bbox_preds_refine (list[Tensor]): Refined Box offsets for |
|
each scale level, each is a 4D-tensor, the channel |
|
number is num_points * 4. |
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
gt_bboxes_ignore (None | list[Tensor]): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
Default: None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, |
|
bbox_preds[0].device) |
|
labels, label_weights, bbox_targets, bbox_weights = self.get_targets( |
|
cls_scores, all_level_points, gt_bboxes, gt_labels, img_metas, |
|
gt_bboxes_ignore) |
|
|
|
num_imgs = cls_scores[0].size(0) |
|
|
|
flatten_cls_scores = [ |
|
cls_score.permute(0, 2, 3, |
|
1).reshape(-1, |
|
self.cls_out_channels).contiguous() |
|
for cls_score in cls_scores |
|
] |
|
flatten_bbox_preds = [ |
|
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() |
|
for bbox_pred in bbox_preds |
|
] |
|
flatten_bbox_preds_refine = [ |
|
bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() |
|
for bbox_pred_refine in bbox_preds_refine |
|
] |
|
flatten_cls_scores = torch.cat(flatten_cls_scores) |
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds) |
|
flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine) |
|
flatten_labels = torch.cat(labels) |
|
flatten_bbox_targets = torch.cat(bbox_targets) |
|
|
|
flatten_points = torch.cat( |
|
[points.repeat(num_imgs, 1) for points in all_level_points]) |
|
|
|
|
|
bg_class_ind = self.num_classes |
|
pos_inds = torch.where( |
|
((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0] |
|
num_pos = len(pos_inds) |
|
|
|
pos_bbox_preds = flatten_bbox_preds[pos_inds] |
|
pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds] |
|
pos_labels = flatten_labels[pos_inds] |
|
|
|
|
|
if self.sync_num_pos: |
|
num_pos_avg_per_gpu = reduce_mean( |
|
pos_inds.new_tensor(num_pos).float()).item() |
|
num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0) |
|
else: |
|
num_pos_avg_per_gpu = num_pos |
|
|
|
if num_pos > 0: |
|
pos_bbox_targets = flatten_bbox_targets[pos_inds] |
|
pos_points = flatten_points[pos_inds] |
|
|
|
pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) |
|
pos_decoded_target_preds = distance2bbox(pos_points, |
|
pos_bbox_targets) |
|
iou_targets_ini = bbox_overlaps( |
|
pos_decoded_bbox_preds, |
|
pos_decoded_target_preds.detach(), |
|
is_aligned=True).clamp(min=1e-6) |
|
bbox_weights_ini = iou_targets_ini.clone().detach() |
|
iou_targets_ini_avg_per_gpu = reduce_mean( |
|
bbox_weights_ini.sum()).item() |
|
bbox_avg_factor_ini = max(iou_targets_ini_avg_per_gpu, 1.0) |
|
loss_bbox = self.loss_bbox( |
|
pos_decoded_bbox_preds, |
|
pos_decoded_target_preds.detach(), |
|
weight=bbox_weights_ini, |
|
avg_factor=bbox_avg_factor_ini) |
|
|
|
pos_decoded_bbox_preds_refine = \ |
|
distance2bbox(pos_points, pos_bbox_preds_refine) |
|
iou_targets_rf = bbox_overlaps( |
|
pos_decoded_bbox_preds_refine, |
|
pos_decoded_target_preds.detach(), |
|
is_aligned=True).clamp(min=1e-6) |
|
bbox_weights_rf = iou_targets_rf.clone().detach() |
|
iou_targets_rf_avg_per_gpu = reduce_mean( |
|
bbox_weights_rf.sum()).item() |
|
bbox_avg_factor_rf = max(iou_targets_rf_avg_per_gpu, 1.0) |
|
loss_bbox_refine = self.loss_bbox_refine( |
|
pos_decoded_bbox_preds_refine, |
|
pos_decoded_target_preds.detach(), |
|
weight=bbox_weights_rf, |
|
avg_factor=bbox_avg_factor_rf) |
|
|
|
|
|
if self.use_vfl: |
|
pos_ious = iou_targets_rf.clone().detach() |
|
cls_iou_targets = torch.zeros_like(flatten_cls_scores) |
|
cls_iou_targets[pos_inds, pos_labels] = pos_ious |
|
else: |
|
loss_bbox = pos_bbox_preds.sum() * 0 |
|
loss_bbox_refine = pos_bbox_preds_refine.sum() * 0 |
|
if self.use_vfl: |
|
cls_iou_targets = torch.zeros_like(flatten_cls_scores) |
|
|
|
if self.use_vfl: |
|
loss_cls = self.loss_cls( |
|
flatten_cls_scores, |
|
cls_iou_targets, |
|
avg_factor=num_pos_avg_per_gpu) |
|
else: |
|
loss_cls = self.loss_cls( |
|
flatten_cls_scores, |
|
flatten_labels, |
|
weight=label_weights, |
|
avg_factor=num_pos_avg_per_gpu) |
|
|
|
return dict( |
|
loss_cls=loss_cls, |
|
loss_bbox=loss_bbox, |
|
loss_bbox_rf=loss_bbox_refine) |
|
|
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine')) |
|
def get_bboxes(self, |
|
cls_scores, |
|
bbox_preds, |
|
bbox_preds_refine, |
|
img_metas, |
|
cfg=None, |
|
rescale=None, |
|
with_nms=True): |
|
"""Transform network outputs for a batch into bbox predictions. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box iou-aware scores for each scale |
|
level with shape (N, num_points * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box offsets for each scale |
|
level with shape (N, num_points * 4, H, W). |
|
bbox_preds_refine (list[Tensor]): Refined Box offsets for |
|
each scale level with shape (N, num_points * 4, H, W). |
|
img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
cfg (mmcv.Config): Test / postprocessing configuration, |
|
if None, test_cfg would be used. Default: None. |
|
rescale (bool): If True, return boxes in original image space. |
|
Default: False. |
|
with_nms (bool): If True, do nms before returning boxes. |
|
Default: True. |
|
|
|
Returns: |
|
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. |
|
The first item is an (n, 5) tensor, where the first 4 columns |
|
are bounding box positions (tl_x, tl_y, br_x, br_y) and the |
|
5-th column is a score between 0 and 1. The second item is a |
|
(n,) tensor where each item is the predicted class label of |
|
the corresponding box. |
|
""" |
|
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) |
|
num_levels = len(cls_scores) |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, |
|
bbox_preds[0].device) |
|
result_list = [] |
|
for img_id in range(len(img_metas)): |
|
cls_score_list = [ |
|
cls_scores[i][img_id].detach() for i in range(num_levels) |
|
] |
|
bbox_pred_list = [ |
|
bbox_preds_refine[i][img_id].detach() |
|
for i in range(num_levels) |
|
] |
|
img_shape = img_metas[img_id]['img_shape'] |
|
scale_factor = img_metas[img_id]['scale_factor'] |
|
det_bboxes = self._get_bboxes_single(cls_score_list, |
|
bbox_pred_list, mlvl_points, |
|
img_shape, scale_factor, cfg, |
|
rescale, with_nms) |
|
result_list.append(det_bboxes) |
|
return result_list |
|
|
|
def _get_bboxes_single(self, |
|
cls_scores, |
|
bbox_preds, |
|
mlvl_points, |
|
img_shape, |
|
scale_factor, |
|
cfg, |
|
rescale=False, |
|
with_nms=True): |
|
"""Transform outputs for a single batch item into bbox predictions. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box iou-aware scores for a single scale |
|
level with shape (num_points * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box offsets for a single scale |
|
level with shape (num_points * 4, H, W). |
|
mlvl_points (list[Tensor]): Box reference for a single scale level |
|
with shape (num_total_points, 4). |
|
img_shape (tuple[int]): Shape of the input image, |
|
(height, width, 3). |
|
scale_factor (ndarray): Scale factor of the image arrange as |
|
(w_scale, h_scale, w_scale, h_scale). |
|
cfg (mmcv.Config | None): Test / postprocessing configuration, |
|
if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Default: False. |
|
with_nms (bool): If True, do nms before returning boxes. |
|
Default: True. |
|
|
|
Returns: |
|
tuple(Tensor): |
|
det_bboxes (Tensor): BBox predictions in shape (n, 5), where |
|
the first 4 columns are bounding box positions |
|
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score |
|
between 0 and 1. |
|
det_labels (Tensor): A (n,) tensor where each item is the |
|
predicted class label of the corresponding box. |
|
""" |
|
cfg = self.test_cfg if cfg is None else cfg |
|
assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) |
|
mlvl_bboxes = [] |
|
mlvl_scores = [] |
|
for cls_score, bbox_pred, points in zip(cls_scores, bbox_preds, |
|
mlvl_points): |
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] |
|
scores = cls_score.permute(1, 2, 0).reshape( |
|
-1, self.cls_out_channels).contiguous().sigmoid() |
|
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).contiguous() |
|
|
|
nms_pre = cfg.get('nms_pre', -1) |
|
if 0 < nms_pre < scores.shape[0]: |
|
max_scores, _ = scores.max(dim=1) |
|
_, topk_inds = max_scores.topk(nms_pre) |
|
points = points[topk_inds, :] |
|
bbox_pred = bbox_pred[topk_inds, :] |
|
scores = scores[topk_inds, :] |
|
bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) |
|
mlvl_bboxes.append(bboxes) |
|
mlvl_scores.append(scores) |
|
mlvl_bboxes = torch.cat(mlvl_bboxes) |
|
if rescale: |
|
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) |
|
mlvl_scores = torch.cat(mlvl_scores) |
|
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) |
|
|
|
|
|
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) |
|
if with_nms: |
|
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, |
|
cfg.score_thr, cfg.nms, |
|
cfg.max_per_img) |
|
return det_bboxes, det_labels |
|
else: |
|
return mlvl_bboxes, mlvl_scores |
|
|
|
def _get_points_single(self, |
|
featmap_size, |
|
stride, |
|
dtype, |
|
device, |
|
flatten=False): |
|
"""Get points according to feature map sizes.""" |
|
h, w = featmap_size |
|
x_range = torch.arange( |
|
0, w * stride, stride, dtype=dtype, device=device) |
|
y_range = torch.arange( |
|
0, h * stride, stride, dtype=dtype, device=device) |
|
y, x = torch.meshgrid(y_range, x_range) |
|
|
|
if self.use_atss: |
|
points = torch.stack( |
|
(x.reshape(-1), y.reshape(-1)), dim=-1) + \ |
|
stride * self.anchor_center_offset |
|
else: |
|
points = torch.stack( |
|
(x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 |
|
return points |
|
|
|
def get_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels, |
|
img_metas, gt_bboxes_ignore): |
|
"""A wrapper for computing ATSS and FCOS targets for points in multiple |
|
images. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box iou-aware scores for each scale |
|
level with shape (N, num_points * num_classes, H, W). |
|
mlvl_points (list[Tensor]): Points of each fpn level, each has |
|
shape (num_points, 2). |
|
gt_bboxes (list[Tensor]): Ground truth bboxes of each image, |
|
each has shape (num_gt, 4). |
|
gt_labels (list[Tensor]): Ground truth labels of each box, |
|
each has shape (num_gt,). |
|
img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be |
|
ignored, shape (num_ignored_gts, 4). |
|
|
|
Returns: |
|
tuple: |
|
labels_list (list[Tensor]): Labels of each level. |
|
label_weights (Tensor/None): Label weights of all levels. |
|
bbox_targets_list (list[Tensor]): Regression targets of each |
|
level, (l, t, r, b). |
|
bbox_weights (Tensor/None): Bbox weights of all levels. |
|
""" |
|
if self.use_atss: |
|
return self.get_atss_targets(cls_scores, mlvl_points, gt_bboxes, |
|
gt_labels, img_metas, |
|
gt_bboxes_ignore) |
|
else: |
|
self.norm_on_bbox = False |
|
return self.get_fcos_targets(mlvl_points, gt_bboxes, gt_labels) |
|
|
|
def _get_target_single(self, *args, **kwargs): |
|
"""Avoid ambiguity in multiple inheritance.""" |
|
if self.use_atss: |
|
return ATSSHead._get_target_single(self, *args, **kwargs) |
|
else: |
|
return FCOSHead._get_target_single(self, *args, **kwargs) |
|
|
|
def get_fcos_targets(self, points, gt_bboxes_list, gt_labels_list): |
|
"""Compute FCOS regression and classification targets for points in |
|
multiple images. |
|
|
|
Args: |
|
points (list[Tensor]): Points of each fpn level, each has shape |
|
(num_points, 2). |
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, |
|
each has shape (num_gt, 4). |
|
gt_labels_list (list[Tensor]): Ground truth labels of each box, |
|
each has shape (num_gt,). |
|
|
|
Returns: |
|
tuple: |
|
labels (list[Tensor]): Labels of each level. |
|
label_weights: None, to be compatible with ATSS targets. |
|
bbox_targets (list[Tensor]): BBox targets of each level. |
|
bbox_weights: None, to be compatible with ATSS targets. |
|
""" |
|
labels, bbox_targets = FCOSHead.get_targets(self, points, |
|
gt_bboxes_list, |
|
gt_labels_list) |
|
label_weights = None |
|
bbox_weights = None |
|
return labels, label_weights, bbox_targets, bbox_weights |
|
|
|
def get_atss_targets(self, |
|
cls_scores, |
|
mlvl_points, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=None): |
|
"""A wrapper for computing ATSS targets for points in multiple images. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box iou-aware scores for each scale |
|
level with shape (N, num_points * num_classes, H, W). |
|
mlvl_points (list[Tensor]): Points of each fpn level, each has |
|
shape (num_points, 2). |
|
gt_bboxes (list[Tensor]): Ground truth bboxes of each image, |
|
each has shape (num_gt, 4). |
|
gt_labels (list[Tensor]): Ground truth labels of each box, |
|
each has shape (num_gt,). |
|
img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be |
|
ignored, shape (num_ignored_gts, 4). Default: None. |
|
|
|
Returns: |
|
tuple: |
|
labels_list (list[Tensor]): Labels of each level. |
|
label_weights (Tensor): Label weights of all levels. |
|
bbox_targets_list (list[Tensor]): Regression targets of each |
|
level, (l, t, r, b). |
|
bbox_weights (Tensor): Bbox weights of all levels. |
|
""" |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.anchor_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, img_metas, device=device) |
|
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 |
|
|
|
cls_reg_targets = ATSSHead.get_targets( |
|
self, |
|
anchor_list, |
|
valid_flag_list, |
|
gt_bboxes, |
|
img_metas, |
|
gt_bboxes_ignore_list=gt_bboxes_ignore, |
|
gt_labels_list=gt_labels, |
|
label_channels=label_channels, |
|
unmap_outputs=True) |
|
if cls_reg_targets is None: |
|
return None |
|
|
|
(anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets |
|
|
|
bbox_targets_list = [ |
|
bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list |
|
] |
|
|
|
num_imgs = len(img_metas) |
|
|
|
bbox_targets_list = self.transform_bbox_targets( |
|
bbox_targets_list, mlvl_points, num_imgs) |
|
|
|
labels_list = [labels.reshape(-1) for labels in labels_list] |
|
label_weights_list = [ |
|
label_weights.reshape(-1) for label_weights in label_weights_list |
|
] |
|
bbox_weights_list = [ |
|
bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list |
|
] |
|
label_weights = torch.cat(label_weights_list) |
|
bbox_weights = torch.cat(bbox_weights_list) |
|
return labels_list, label_weights, bbox_targets_list, bbox_weights |
|
|
|
def transform_bbox_targets(self, decoded_bboxes, mlvl_points, num_imgs): |
|
"""Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format. |
|
|
|
Args: |
|
decoded_bboxes (list[Tensor]): Regression targets of each level, |
|
in the form of (x1, y1, x2, y2). |
|
mlvl_points (list[Tensor]): Points of each fpn level, each has |
|
shape (num_points, 2). |
|
num_imgs (int): the number of images in a batch. |
|
|
|
Returns: |
|
bbox_targets (list[Tensor]): Regression targets of each level in |
|
the form of (l, t, r, b). |
|
""" |
|
|
|
assert len(decoded_bboxes) == len(mlvl_points) |
|
num_levels = len(decoded_bboxes) |
|
mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points] |
|
bbox_targets = [] |
|
for i in range(num_levels): |
|
bbox_target = bbox2distance(mlvl_points[i], decoded_bboxes[i]) |
|
bbox_targets.append(bbox_target) |
|
|
|
return bbox_targets |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs): |
|
"""Override the method in the parent class to avoid changing para's |
|
name.""" |
|
pass |
|
|