File size: 35,403 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init
from mmcv.ops import DeformConv2d
from mmcv.runner import force_fp32
from mmdet.core import (bbox2distance, bbox_overlaps, build_anchor_generator,
build_assigner, build_sampler, distance2bbox,
multi_apply, multiclass_nms, reduce_mean)
from ..builder import HEADS, build_loss
from .atss_head import ATSSHead
from .fcos_head import FCOSHead
INF = 1e8
@HEADS.register_module()
class VFNetHead(ATSSHead, FCOSHead):
"""Head of `VarifocalNet (VFNet): An IoU-aware Dense Object
Detector.<https://arxiv.org/abs/2008.13367>`_.
The VFNet predicts IoU-aware classification scores which mix the
object presence confidence and object localization accuracy as the
detection score. It is built on the FCOS architecture and uses ATSS
for defining positive/negative training examples. The VFNet is trained
with Varifocal Loss and empolys star-shaped deformable convolution to
extract features for a bbox.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
level points.
center_sampling (bool): If true, use center sampling. Default: False.
center_sample_radius (float): Radius of center sampling. Default: 1.5.
sync_num_pos (bool): If true, synchronize the number of positive
examples across GPUs. Default: True
gradient_mul (float): The multiplier to gradients from bbox refinement
and recognition. Default: 0.1.
bbox_norm_type (str): The bbox normalization type, 'reg_denom' or
'stride'. Default: reg_denom
loss_cls_fl (dict): Config of focal loss.
use_vfl (bool): If true, use varifocal loss for training.
Default: True.
loss_cls (dict): Config of varifocal loss.
loss_bbox (dict): Config of localization loss, GIoU Loss.
loss_bbox (dict): Config of localization refinement loss, GIoU Loss.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: norm_cfg=dict(type='GN', num_groups=32,
requires_grad=True).
use_atss (bool): If true, use ATSS to define positive/negative
examples. Default: True.
anchor_generator (dict): Config of anchor generator for ATSS.
Example:
>>> self = VFNetHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats)
>>> assert len(cls_score) == len(self.scales)
""" # noqa: E501
def __init__(self,
num_classes,
in_channels,
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
(512, INF)),
center_sampling=False,
center_sample_radius=1.5,
sync_num_pos=True,
gradient_mul=0.1,
bbox_norm_type='reg_denom',
loss_cls_fl=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
use_vfl=True,
loss_cls=dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.5),
loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0),
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
use_atss=True,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
center_offset=0.0,
strides=[8, 16, 32, 64, 128]),
**kwargs):
# dcn base offsets, adapted from reppoints_head.py
self.num_dconv_points = 9
self.dcn_kernel = int(np.sqrt(self.num_dconv_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
super(FCOSHead, self).__init__(
num_classes, in_channels, norm_cfg=norm_cfg, **kwargs)
self.regress_ranges = regress_ranges
self.reg_denoms = [
regress_range[-1] for regress_range in regress_ranges
]
self.reg_denoms[-1] = self.reg_denoms[-2] * 2
self.center_sampling = center_sampling
self.center_sample_radius = center_sample_radius
self.sync_num_pos = sync_num_pos
self.bbox_norm_type = bbox_norm_type
self.gradient_mul = gradient_mul
self.use_vfl = use_vfl
if self.use_vfl:
self.loss_cls = build_loss(loss_cls)
else:
self.loss_cls = build_loss(loss_cls_fl)
self.loss_bbox = build_loss(loss_bbox)
self.loss_bbox_refine = build_loss(loss_bbox_refine)
# for getting ATSS targets
self.use_atss = use_atss
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
self.anchor_generator = build_anchor_generator(anchor_generator)
self.anchor_center_offset = anchor_generator['center_offset']
self.num_anchors = self.anchor_generator.num_base_anchors[0]
self.sampling = False
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
def _init_layers(self):
"""Initialize layers of the head."""
super(FCOSHead, self)._init_cls_convs()
super(FCOSHead, self)._init_reg_convs()
self.relu = nn.ReLU(inplace=True)
self.vfnet_reg_conv = ConvModule(
self.feat_channels,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
bias=self.conv_bias)
self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_reg_refine_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_cls_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
def init_weights(self):
"""Initialize weights of the head."""
for m in self.cls_convs:
if isinstance(m.conv, nn.Conv2d):
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
if isinstance(m.conv, nn.Conv2d):
normal_init(m.conv, std=0.01)
normal_init(self.vfnet_reg_conv.conv, std=0.01)
normal_init(self.vfnet_reg, std=0.01)
normal_init(self.vfnet_reg_refine_dconv, std=0.01)
normal_init(self.vfnet_reg_refine, std=0.01)
normal_init(self.vfnet_cls_dconv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.vfnet_cls, std=0.01, bias=bias_cls)
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
"""
return multi_apply(self.forward_single, feats, self.scales,
self.scales_refine, self.strides, self.reg_denoms)
def forward_single(self, x, scale, scale_refine, stride, reg_denom):
"""Forward features of a single scale level.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to
resize the refined bbox prediction.
stride (int): The corresponding stride for feature maps,
used to normalize the bbox prediction when
bbox_norm_type = 'stride'.
reg_denom (int): The corresponding regression range for feature
maps, only used to normalize the bbox prediction when
bbox_norm_type = 'reg_denom'.
Returns:
tuple: iou-aware cls scores for each box, bbox predictions and
refined bbox predictions of input feature maps.
"""
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
# predict the bbox_pred of different level
reg_feat_init = self.vfnet_reg_conv(reg_feat)
if self.bbox_norm_type == 'reg_denom':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom
elif self.bbox_norm_type == 'stride':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * stride
else:
raise NotImplementedError
# compute star deformable convolution offsets
# converting dcn_offset to reg_feat.dtype thus VFNet can be
# trained with FP16
dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul,
stride).to(reg_feat.dtype)
# refine the bbox_pred
reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset))
bbox_pred_refine = scale_refine(
self.vfnet_reg_refine(reg_feat)).float().exp()
bbox_pred_refine = bbox_pred_refine * bbox_pred.detach()
# predict the iou-aware cls score
cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset))
cls_score = self.vfnet_cls(cls_feat)
return cls_score, bbox_pred, bbox_pred_refine
def star_dcn_offset(self, bbox_pred, gradient_mul, stride):
"""Compute the star deformable conv offsets.
Args:
bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b).
gradient_mul (float): Gradient multiplier.
stride (int): The corresponding stride for feature maps,
used to project the bbox onto the feature map.
Returns:
dcn_offsets (Tensor): The offsets for deformable convolution.
"""
dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred)
bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \
gradient_mul * bbox_pred
# map to the feature map scale
bbox_pred_grad_mul = bbox_pred_grad_mul / stride
N, C, H, W = bbox_pred.size()
x1 = bbox_pred_grad_mul[:, 0, :, :]
y1 = bbox_pred_grad_mul[:, 1, :, :]
x2 = bbox_pred_grad_mul[:, 2, :, :]
y2 = bbox_pred_grad_mul[:, 3, :, :]
bbox_pred_grad_mul_offset = bbox_pred.new_zeros(
N, 2 * self.num_dconv_points, H, W)
bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2
dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset
return dcn_offset
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine'))
def loss(self,
cls_scores,
bbox_preds,
bbox_preds_refine,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute loss of the head.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Default: None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
bbox_preds[0].device)
labels, label_weights, bbox_targets, bbox_weights = self.get_targets(
cls_scores, all_level_points, gt_bboxes, gt_labels, img_metas,
gt_bboxes_ignore)
num_imgs = cls_scores[0].size(0)
# flatten cls_scores, bbox_preds and bbox_preds_refine
flatten_cls_scores = [
cls_score.permute(0, 2, 3,
1).reshape(-1,
self.cls_out_channels).contiguous()
for cls_score in cls_scores
]
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred in bbox_preds
]
flatten_bbox_preds_refine = [
bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred_refine in bbox_preds_refine
]
flatten_cls_scores = torch.cat(flatten_cls_scores)
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine)
flatten_labels = torch.cat(labels)
flatten_bbox_targets = torch.cat(bbox_targets)
# repeat points to align with bbox_preds
flatten_points = torch.cat(
[points.repeat(num_imgs, 1) for points in all_level_points])
# FG cat_id: [0, num_classes - 1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = torch.where(
((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0]
num_pos = len(pos_inds)
pos_bbox_preds = flatten_bbox_preds[pos_inds]
pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds]
pos_labels = flatten_labels[pos_inds]
# sync num_pos across all gpus
if self.sync_num_pos:
num_pos_avg_per_gpu = reduce_mean(
pos_inds.new_tensor(num_pos).float()).item()
num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0)
else:
num_pos_avg_per_gpu = num_pos
if num_pos > 0:
pos_bbox_targets = flatten_bbox_targets[pos_inds]
pos_points = flatten_points[pos_inds]
pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
pos_decoded_target_preds = distance2bbox(pos_points,
pos_bbox_targets)
iou_targets_ini = bbox_overlaps(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_ini = iou_targets_ini.clone().detach()
iou_targets_ini_avg_per_gpu = reduce_mean(
bbox_weights_ini.sum()).item()
bbox_avg_factor_ini = max(iou_targets_ini_avg_per_gpu, 1.0)
loss_bbox = self.loss_bbox(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
weight=bbox_weights_ini,
avg_factor=bbox_avg_factor_ini)
pos_decoded_bbox_preds_refine = \
distance2bbox(pos_points, pos_bbox_preds_refine)
iou_targets_rf = bbox_overlaps(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_rf = iou_targets_rf.clone().detach()
iou_targets_rf_avg_per_gpu = reduce_mean(
bbox_weights_rf.sum()).item()
bbox_avg_factor_rf = max(iou_targets_rf_avg_per_gpu, 1.0)
loss_bbox_refine = self.loss_bbox_refine(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
weight=bbox_weights_rf,
avg_factor=bbox_avg_factor_rf)
# build IoU-aware cls_score targets
if self.use_vfl:
pos_ious = iou_targets_rf.clone().detach()
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
cls_iou_targets[pos_inds, pos_labels] = pos_ious
else:
loss_bbox = pos_bbox_preds.sum() * 0
loss_bbox_refine = pos_bbox_preds_refine.sum() * 0
if self.use_vfl:
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
if self.use_vfl:
loss_cls = self.loss_cls(
flatten_cls_scores,
cls_iou_targets,
avg_factor=num_pos_avg_per_gpu)
else:
loss_cls = self.loss_cls(
flatten_cls_scores,
flatten_labels,
weight=label_weights,
avg_factor=num_pos_avg_per_gpu)
return dict(
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_bbox_rf=loss_bbox_refine)
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine'))
def get_bboxes(self,
cls_scores,
bbox_preds,
bbox_preds_refine,
img_metas,
cfg=None,
rescale=None,
with_nms=True):
"""Transform network outputs for a batch into bbox predictions.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box offsets for each scale
level with shape (N, num_points * 4, H, W).
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level with shape (N, num_points * 4, H, W).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used. Default: None.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before returning boxes.
Default: True.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1. The second item is a
(n,) tensor where each item is the predicted class label of
the corresponding box.
"""
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
bbox_preds[0].device)
result_list = []
for img_id in range(len(img_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_pred_list = [
bbox_preds_refine[i][img_id].detach()
for i in range(num_levels)
]
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
det_bboxes = self._get_bboxes_single(cls_score_list,
bbox_pred_list, mlvl_points,
img_shape, scale_factor, cfg,
rescale, with_nms)
result_list.append(det_bboxes)
return result_list
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_points,
img_shape,
scale_factor,
cfg,
rescale=False,
with_nms=True):
"""Transform outputs for a single batch item into bbox predictions.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for a single scale
level with shape (num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box offsets for a single scale
level with shape (num_points * 4, H, W).
mlvl_points (list[Tensor]): Box reference for a single scale level
with shape (num_total_points, 4).
img_shape (tuple[int]): Shape of the input image,
(height, width, 3).
scale_factor (ndarray): Scale factor of the image arrange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config | None): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before returning boxes.
Default: True.
Returns:
tuple(Tensor):
det_bboxes (Tensor): BBox predictions in shape (n, 5), where
the first 4 columns are bounding box positions
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score
between 0 and 1.
det_labels (Tensor): A (n,) tensor where each item is the
predicted class label of the corresponding box.
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, points in zip(cls_scores, bbox_preds,
mlvl_points):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).contiguous().sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).contiguous()
nms_pre = cfg.get('nms_pre', -1)
if 0 < nms_pre < scores.shape[0]:
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
points = points[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
if with_nms:
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores
def _get_points_single(self,
featmap_size,
stride,
dtype,
device,
flatten=False):
"""Get points according to feature map sizes."""
h, w = featmap_size
x_range = torch.arange(
0, w * stride, stride, dtype=dtype, device=device)
y_range = torch.arange(
0, h * stride, stride, dtype=dtype, device=device)
y, x = torch.meshgrid(y_range, x_range)
# to be compatible with anchor points in ATSS
if self.use_atss:
points = torch.stack(
(x.reshape(-1), y.reshape(-1)), dim=-1) + \
stride * self.anchor_center_offset
else:
points = torch.stack(
(x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2
return points
def get_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels,
img_metas, gt_bboxes_ignore):
"""A wrapper for computing ATSS and FCOS targets for points in multiple
images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
gt_bboxes (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
Returns:
tuple:
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor/None): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
bbox_weights (Tensor/None): Bbox weights of all levels.
"""
if self.use_atss:
return self.get_atss_targets(cls_scores, mlvl_points, gt_bboxes,
gt_labels, img_metas,
gt_bboxes_ignore)
else:
self.norm_on_bbox = False
return self.get_fcos_targets(mlvl_points, gt_bboxes, gt_labels)
def _get_target_single(self, *args, **kwargs):
"""Avoid ambiguity in multiple inheritance."""
if self.use_atss:
return ATSSHead._get_target_single(self, *args, **kwargs)
else:
return FCOSHead._get_target_single(self, *args, **kwargs)
def get_fcos_targets(self, points, gt_bboxes_list, gt_labels_list):
"""Compute FCOS regression and classification targets for points in
multiple images.
Args:
points (list[Tensor]): Points of each fpn level, each has shape
(num_points, 2).
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels_list (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
Returns:
tuple:
labels (list[Tensor]): Labels of each level.
label_weights: None, to be compatible with ATSS targets.
bbox_targets (list[Tensor]): BBox targets of each level.
bbox_weights: None, to be compatible with ATSS targets.
"""
labels, bbox_targets = FCOSHead.get_targets(self, points,
gt_bboxes_list,
gt_labels_list)
label_weights = None
bbox_weights = None
return labels, label_weights, bbox_targets, bbox_weights
def get_atss_targets(self,
cls_scores,
mlvl_points,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""A wrapper for computing ATSS targets for points in multiple images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
gt_bboxes (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4). Default: None.
Returns:
tuple:
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
bbox_weights (Tensor): Bbox weights of all levels.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = ATSSHead.get_targets(
self,
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels,
unmap_outputs=True)
if cls_reg_targets is None:
return None
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets
bbox_targets_list = [
bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list
]
num_imgs = len(img_metas)
# transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format
bbox_targets_list = self.transform_bbox_targets(
bbox_targets_list, mlvl_points, num_imgs)
labels_list = [labels.reshape(-1) for labels in labels_list]
label_weights_list = [
label_weights.reshape(-1) for label_weights in label_weights_list
]
bbox_weights_list = [
bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list
]
label_weights = torch.cat(label_weights_list)
bbox_weights = torch.cat(bbox_weights_list)
return labels_list, label_weights, bbox_targets_list, bbox_weights
def transform_bbox_targets(self, decoded_bboxes, mlvl_points, num_imgs):
"""Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format.
Args:
decoded_bboxes (list[Tensor]): Regression targets of each level,
in the form of (x1, y1, x2, y2).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
num_imgs (int): the number of images in a batch.
Returns:
bbox_targets (list[Tensor]): Regression targets of each level in
the form of (l, t, r, b).
"""
# TODO: Re-implemented in Class PointCoder
assert len(decoded_bboxes) == len(mlvl_points)
num_levels = len(decoded_bboxes)
mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points]
bbox_targets = []
for i in range(num_levels):
bbox_target = bbox2distance(mlvl_points[i], decoded_bboxes[i])
bbox_targets.append(bbox_target)
return bbox_targets
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
"""Override the method in the parent class to avoid changing para's
name."""
pass
|