|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init |
|
from mmcv.runner import force_fp32 |
|
|
|
from mmdet.core import (build_anchor_generator, build_assigner, |
|
build_bbox_coder, build_sampler, images_to_levels, |
|
multi_apply, multiclass_nms, unmap) |
|
from ..builder import HEADS, build_loss |
|
from .base_dense_head import BaseDenseHead |
|
from .guided_anchor_head import GuidedAnchorHead |
|
|
|
|
|
@HEADS.register_module() |
|
class SABLRetinaHead(BaseDenseHead): |
|
"""Side-Aware Boundary Localization (SABL) for RetinaNet. |
|
|
|
The anchor generation, assigning and sampling in SABLRetinaHead |
|
are the same as GuidedAnchorHead for guided anchoring. |
|
|
|
Please refer to https://arxiv.org/abs/1912.04260 for more details. |
|
|
|
Args: |
|
num_classes (int): Number of classes. |
|
in_channels (int): Number of channels in the input feature map. |
|
stacked_convs (int): Number of Convs for classification \ |
|
and regression branches. Defaults to 4. |
|
feat_channels (int): Number of hidden channels. \ |
|
Defaults to 256. |
|
approx_anchor_generator (dict): Config dict for approx generator. |
|
square_anchor_generator (dict): Config dict for square generator. |
|
conv_cfg (dict): Config dict for ConvModule. Defaults to None. |
|
norm_cfg (dict): Config dict for Norm Layer. Defaults to None. |
|
bbox_coder (dict): Config dict for bbox coder. |
|
reg_decoded_bbox (bool): If true, the regression loss would be |
|
applied directly on decoded bounding boxes, converting both |
|
the predicted boxes and regression targets to absolute |
|
coordinates format. Default False. It should be `True` when |
|
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. |
|
train_cfg (dict): Training config of SABLRetinaHead. |
|
test_cfg (dict): Testing config of SABLRetinaHead. |
|
loss_cls (dict): Config of classification loss. |
|
loss_bbox_cls (dict): Config of classification loss for bbox branch. |
|
loss_bbox_reg (dict): Config of regression loss for bbox branch. |
|
""" |
|
|
|
def __init__(self, |
|
num_classes, |
|
in_channels, |
|
stacked_convs=4, |
|
feat_channels=256, |
|
approx_anchor_generator=dict( |
|
type='AnchorGenerator', |
|
octave_base_scale=4, |
|
scales_per_octave=3, |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[8, 16, 32, 64, 128]), |
|
square_anchor_generator=dict( |
|
type='AnchorGenerator', |
|
ratios=[1.0], |
|
scales=[4], |
|
strides=[8, 16, 32, 64, 128]), |
|
conv_cfg=None, |
|
norm_cfg=None, |
|
bbox_coder=dict( |
|
type='BucketingBBoxCoder', |
|
num_buckets=14, |
|
scale_factor=3.0), |
|
reg_decoded_bbox=False, |
|
train_cfg=None, |
|
test_cfg=None, |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=True, |
|
loss_weight=1.5), |
|
loss_bbox_reg=dict( |
|
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)): |
|
super(SABLRetinaHead, self).__init__() |
|
self.in_channels = in_channels |
|
self.num_classes = num_classes |
|
self.feat_channels = feat_channels |
|
self.num_buckets = bbox_coder['num_buckets'] |
|
self.side_num = int(np.ceil(self.num_buckets / 2)) |
|
|
|
assert (approx_anchor_generator['octave_base_scale'] == |
|
square_anchor_generator['scales'][0]) |
|
assert (approx_anchor_generator['strides'] == |
|
square_anchor_generator['strides']) |
|
|
|
self.approx_anchor_generator = build_anchor_generator( |
|
approx_anchor_generator) |
|
self.square_anchor_generator = build_anchor_generator( |
|
square_anchor_generator) |
|
self.approxs_per_octave = ( |
|
self.approx_anchor_generator.num_base_anchors[0]) |
|
|
|
|
|
self.num_anchors = 1 |
|
self.stacked_convs = stacked_convs |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
|
|
self.reg_decoded_bbox = reg_decoded_bbox |
|
|
|
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) |
|
self.sampling = loss_cls['type'] not in [ |
|
'FocalLoss', 'GHMC', 'QualityFocalLoss' |
|
] |
|
if self.use_sigmoid_cls: |
|
self.cls_out_channels = num_classes |
|
else: |
|
self.cls_out_channels = num_classes + 1 |
|
|
|
self.bbox_coder = build_bbox_coder(bbox_coder) |
|
self.loss_cls = build_loss(loss_cls) |
|
self.loss_bbox_cls = build_loss(loss_bbox_cls) |
|
self.loss_bbox_reg = build_loss(loss_bbox_reg) |
|
|
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
if self.train_cfg: |
|
self.assigner = build_assigner(self.train_cfg.assigner) |
|
|
|
if self.sampling and hasattr(self.train_cfg, 'sampler'): |
|
sampler_cfg = self.train_cfg.sampler |
|
else: |
|
sampler_cfg = dict(type='PseudoSampler') |
|
self.sampler = build_sampler(sampler_cfg, context=self) |
|
|
|
self.fp16_enabled = False |
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
self.relu = nn.ReLU(inplace=True) |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
self.cls_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.reg_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.retina_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
self.retina_bbox_reg = nn.Conv2d( |
|
self.feat_channels, self.side_num * 4, 3, padding=1) |
|
self.retina_bbox_cls = nn.Conv2d( |
|
self.feat_channels, self.side_num * 4, 3, padding=1) |
|
|
|
def init_weights(self): |
|
for m in self.cls_convs: |
|
normal_init(m.conv, std=0.01) |
|
for m in self.reg_convs: |
|
normal_init(m.conv, std=0.01) |
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.retina_cls, std=0.01, bias=bias_cls) |
|
normal_init(self.retina_bbox_reg, std=0.01) |
|
normal_init(self.retina_bbox_cls, std=0.01) |
|
|
|
def forward_single(self, x): |
|
cls_feat = x |
|
reg_feat = x |
|
for cls_conv in self.cls_convs: |
|
cls_feat = cls_conv(cls_feat) |
|
for reg_conv in self.reg_convs: |
|
reg_feat = reg_conv(reg_feat) |
|
cls_score = self.retina_cls(cls_feat) |
|
bbox_cls_pred = self.retina_bbox_cls(reg_feat) |
|
bbox_reg_pred = self.retina_bbox_reg(reg_feat) |
|
bbox_pred = (bbox_cls_pred, bbox_reg_pred) |
|
return cls_score, bbox_pred |
|
|
|
def forward(self, feats): |
|
return multi_apply(self.forward_single, feats) |
|
|
|
def get_anchors(self, featmap_sizes, img_metas, device='cuda'): |
|
"""Get squares according to feature map sizes and guided anchors. |
|
|
|
Args: |
|
featmap_sizes (list[tuple]): Multi-level feature map sizes. |
|
img_metas (list[dict]): Image meta info. |
|
device (torch.device | str): device for returned tensors |
|
|
|
Returns: |
|
tuple: square approxs of each image |
|
""" |
|
num_imgs = len(img_metas) |
|
|
|
|
|
|
|
multi_level_squares = self.square_anchor_generator.grid_anchors( |
|
featmap_sizes, device=device) |
|
squares_list = [multi_level_squares for _ in range(num_imgs)] |
|
|
|
return squares_list |
|
|
|
def get_target(self, |
|
approx_list, |
|
inside_flag_list, |
|
square_list, |
|
gt_bboxes_list, |
|
img_metas, |
|
gt_bboxes_ignore_list=None, |
|
gt_labels_list=None, |
|
label_channels=None, |
|
sampling=True, |
|
unmap_outputs=True): |
|
"""Compute bucketing targets. |
|
Args: |
|
approx_list (list[list]): Multi level approxs of each image. |
|
inside_flag_list (list[list]): Multi level inside flags of each |
|
image. |
|
square_list (list[list]): Multi level squares of each image. |
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. |
|
img_metas (list[dict]): Meta info of each image. |
|
gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes. |
|
gt_bboxes_list (list[Tensor]): Gt bboxes of each image. |
|
label_channels (int): Channel of label. |
|
sampling (bool): Sample Anchors or not. |
|
unmap_outputs (bool): unmap outputs or not. |
|
|
|
Returns: |
|
tuple: Returns a tuple containing learning targets. |
|
|
|
- labels_list (list[Tensor]): Labels of each level. |
|
- label_weights_list (list[Tensor]): Label weights of each \ |
|
level. |
|
- bbox_cls_targets_list (list[Tensor]): BBox cls targets of \ |
|
each level. |
|
- bbox_cls_weights_list (list[Tensor]): BBox cls weights of \ |
|
each level. |
|
- bbox_reg_targets_list (list[Tensor]): BBox reg targets of \ |
|
each level. |
|
- bbox_reg_weights_list (list[Tensor]): BBox reg weights of \ |
|
each level. |
|
- num_total_pos (int): Number of positive samples in all \ |
|
images. |
|
- num_total_neg (int): Number of negative samples in all \ |
|
images. |
|
""" |
|
num_imgs = len(img_metas) |
|
assert len(approx_list) == len(inside_flag_list) == len( |
|
square_list) == num_imgs |
|
|
|
num_level_squares = [squares.size(0) for squares in square_list[0]] |
|
|
|
inside_flag_flat_list = [] |
|
approx_flat_list = [] |
|
square_flat_list = [] |
|
for i in range(num_imgs): |
|
assert len(square_list[i]) == len(inside_flag_list[i]) |
|
inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) |
|
approx_flat_list.append(torch.cat(approx_list[i])) |
|
square_flat_list.append(torch.cat(square_list[i])) |
|
|
|
|
|
if gt_bboxes_ignore_list is None: |
|
gt_bboxes_ignore_list = [None for _ in range(num_imgs)] |
|
if gt_labels_list is None: |
|
gt_labels_list = [None for _ in range(num_imgs)] |
|
(all_labels, all_label_weights, all_bbox_cls_targets, |
|
all_bbox_cls_weights, all_bbox_reg_targets, all_bbox_reg_weights, |
|
pos_inds_list, neg_inds_list) = multi_apply( |
|
self._get_target_single, |
|
approx_flat_list, |
|
inside_flag_flat_list, |
|
square_flat_list, |
|
gt_bboxes_list, |
|
gt_bboxes_ignore_list, |
|
gt_labels_list, |
|
img_metas, |
|
label_channels=label_channels, |
|
sampling=sampling, |
|
unmap_outputs=unmap_outputs) |
|
|
|
if any([labels is None for labels in all_labels]): |
|
return None |
|
|
|
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) |
|
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) |
|
|
|
labels_list = images_to_levels(all_labels, num_level_squares) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_squares) |
|
bbox_cls_targets_list = images_to_levels(all_bbox_cls_targets, |
|
num_level_squares) |
|
bbox_cls_weights_list = images_to_levels(all_bbox_cls_weights, |
|
num_level_squares) |
|
bbox_reg_targets_list = images_to_levels(all_bbox_reg_targets, |
|
num_level_squares) |
|
bbox_reg_weights_list = images_to_levels(all_bbox_reg_weights, |
|
num_level_squares) |
|
return (labels_list, label_weights_list, bbox_cls_targets_list, |
|
bbox_cls_weights_list, bbox_reg_targets_list, |
|
bbox_reg_weights_list, num_total_pos, num_total_neg) |
|
|
|
def _get_target_single(self, |
|
flat_approxs, |
|
inside_flags, |
|
flat_squares, |
|
gt_bboxes, |
|
gt_bboxes_ignore, |
|
gt_labels, |
|
img_meta, |
|
label_channels=None, |
|
sampling=True, |
|
unmap_outputs=True): |
|
"""Compute regression and classification targets for anchors in a |
|
single image. |
|
|
|
Args: |
|
flat_approxs (Tensor): flat approxs of a single image, |
|
shape (n, 4) |
|
inside_flags (Tensor): inside flags of a single image, |
|
shape (n, ). |
|
flat_squares (Tensor): flat squares of a single image, |
|
shape (approxs_per_octave * n, 4) |
|
gt_bboxes (Tensor): Ground truth bboxes of a single image, \ |
|
shape (num_gts, 4). |
|
gt_bboxes_ignore (Tensor): Ground truth bboxes to be |
|
ignored, shape (num_ignored_gts, 4). |
|
gt_labels (Tensor): Ground truth labels of each box, |
|
shape (num_gts,). |
|
img_meta (dict): Meta info of the image. |
|
label_channels (int): Channel of label. |
|
sampling (bool): Sample Anchors or not. |
|
unmap_outputs (bool): unmap outputs or not. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- labels_list (Tensor): Labels in a single image |
|
- label_weights (Tensor): Label weights in a single image |
|
- bbox_cls_targets (Tensor): BBox cls targets in a single image |
|
- bbox_cls_weights (Tensor): BBox cls weights in a single image |
|
- bbox_reg_targets (Tensor): BBox reg targets in a single image |
|
- bbox_reg_weights (Tensor): BBox reg weights in a single image |
|
- num_total_pos (int): Number of positive samples \ |
|
in a single image |
|
- num_total_neg (int): Number of negative samples \ |
|
in a single image |
|
""" |
|
if not inside_flags.any(): |
|
return (None, ) * 8 |
|
|
|
expand_inside_flags = inside_flags[:, None].expand( |
|
-1, self.approxs_per_octave).reshape(-1) |
|
approxs = flat_approxs[expand_inside_flags, :] |
|
squares = flat_squares[inside_flags, :] |
|
|
|
assign_result = self.assigner.assign(approxs, squares, |
|
self.approxs_per_octave, |
|
gt_bboxes, gt_bboxes_ignore) |
|
sampling_result = self.sampler.sample(assign_result, squares, |
|
gt_bboxes) |
|
|
|
num_valid_squares = squares.shape[0] |
|
bbox_cls_targets = squares.new_zeros( |
|
(num_valid_squares, self.side_num * 4)) |
|
bbox_cls_weights = squares.new_zeros( |
|
(num_valid_squares, self.side_num * 4)) |
|
bbox_reg_targets = squares.new_zeros( |
|
(num_valid_squares, self.side_num * 4)) |
|
bbox_reg_weights = squares.new_zeros( |
|
(num_valid_squares, self.side_num * 4)) |
|
labels = squares.new_full((num_valid_squares, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
label_weights = squares.new_zeros(num_valid_squares, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
(pos_bbox_reg_targets, pos_bbox_reg_weights, pos_bbox_cls_targets, |
|
pos_bbox_cls_weights) = self.bbox_coder.encode( |
|
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) |
|
|
|
bbox_cls_targets[pos_inds, :] = pos_bbox_cls_targets |
|
bbox_reg_targets[pos_inds, :] = pos_bbox_reg_targets |
|
bbox_cls_weights[pos_inds, :] = pos_bbox_cls_weights |
|
bbox_reg_weights[pos_inds, :] = pos_bbox_reg_weights |
|
if gt_labels is None: |
|
|
|
|
|
labels[pos_inds] = 0 |
|
else: |
|
labels[pos_inds] = gt_labels[ |
|
sampling_result.pos_assigned_gt_inds] |
|
if self.train_cfg.pos_weight <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg.pos_weight |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_squares.size(0) |
|
labels = unmap( |
|
labels, num_total_anchors, inside_flags, fill=self.num_classes) |
|
label_weights = unmap(label_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_cls_targets = unmap(bbox_cls_targets, num_total_anchors, |
|
inside_flags) |
|
bbox_cls_weights = unmap(bbox_cls_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_reg_targets = unmap(bbox_reg_targets, num_total_anchors, |
|
inside_flags) |
|
bbox_reg_weights = unmap(bbox_reg_weights, num_total_anchors, |
|
inside_flags) |
|
return (labels, label_weights, bbox_cls_targets, bbox_cls_weights, |
|
bbox_reg_targets, bbox_reg_weights, pos_inds, neg_inds) |
|
|
|
def loss_single(self, cls_score, bbox_pred, labels, label_weights, |
|
bbox_cls_targets, bbox_cls_weights, bbox_reg_targets, |
|
bbox_reg_weights, num_total_samples): |
|
|
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
cls_score = cls_score.permute(0, 2, 3, |
|
1).reshape(-1, self.cls_out_channels) |
|
loss_cls = self.loss_cls( |
|
cls_score, labels, label_weights, avg_factor=num_total_samples) |
|
|
|
bbox_cls_targets = bbox_cls_targets.reshape(-1, self.side_num * 4) |
|
bbox_cls_weights = bbox_cls_weights.reshape(-1, self.side_num * 4) |
|
bbox_reg_targets = bbox_reg_targets.reshape(-1, self.side_num * 4) |
|
bbox_reg_weights = bbox_reg_weights.reshape(-1, self.side_num * 4) |
|
(bbox_cls_pred, bbox_reg_pred) = bbox_pred |
|
bbox_cls_pred = bbox_cls_pred.permute(0, 2, 3, 1).reshape( |
|
-1, self.side_num * 4) |
|
bbox_reg_pred = bbox_reg_pred.permute(0, 2, 3, 1).reshape( |
|
-1, self.side_num * 4) |
|
loss_bbox_cls = self.loss_bbox_cls( |
|
bbox_cls_pred, |
|
bbox_cls_targets.long(), |
|
bbox_cls_weights, |
|
avg_factor=num_total_samples * 4 * self.side_num) |
|
loss_bbox_reg = self.loss_bbox_reg( |
|
bbox_reg_pred, |
|
bbox_reg_targets, |
|
bbox_reg_weights, |
|
avg_factor=num_total_samples * 4 * self.bbox_coder.offset_topk) |
|
return loss_cls, loss_bbox_cls, loss_bbox_reg |
|
|
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds')) |
|
def loss(self, |
|
cls_scores, |
|
bbox_preds, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=None): |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.approx_anchor_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
|
|
|
|
approxs_list, inside_flag_list = GuidedAnchorHead.get_sampled_approxs( |
|
self, featmap_sizes, img_metas, device=device) |
|
|
|
square_list = self.get_anchors(featmap_sizes, img_metas, device=device) |
|
|
|
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 |
|
|
|
cls_reg_targets = self.get_target( |
|
approxs_list, |
|
inside_flag_list, |
|
square_list, |
|
gt_bboxes, |
|
img_metas, |
|
gt_bboxes_ignore_list=gt_bboxes_ignore, |
|
gt_labels_list=gt_labels, |
|
label_channels=label_channels, |
|
sampling=self.sampling) |
|
if cls_reg_targets is None: |
|
return None |
|
(labels_list, label_weights_list, bbox_cls_targets_list, |
|
bbox_cls_weights_list, bbox_reg_targets_list, bbox_reg_weights_list, |
|
num_total_pos, num_total_neg) = cls_reg_targets |
|
num_total_samples = ( |
|
num_total_pos + num_total_neg if self.sampling else num_total_pos) |
|
losses_cls, losses_bbox_cls, losses_bbox_reg = multi_apply( |
|
self.loss_single, |
|
cls_scores, |
|
bbox_preds, |
|
labels_list, |
|
label_weights_list, |
|
bbox_cls_targets_list, |
|
bbox_cls_weights_list, |
|
bbox_reg_targets_list, |
|
bbox_reg_weights_list, |
|
num_total_samples=num_total_samples) |
|
return dict( |
|
loss_cls=losses_cls, |
|
loss_bbox_cls=losses_bbox_cls, |
|
loss_bbox_reg=losses_bbox_reg) |
|
|
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds')) |
|
def get_bboxes(self, |
|
cls_scores, |
|
bbox_preds, |
|
img_metas, |
|
cfg=None, |
|
rescale=False): |
|
assert len(cls_scores) == len(bbox_preds) |
|
num_levels = len(cls_scores) |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
|
|
device = cls_scores[0].device |
|
mlvl_anchors = self.get_anchors( |
|
featmap_sizes, img_metas, device=device) |
|
result_list = [] |
|
for img_id in range(len(img_metas)): |
|
cls_score_list = [ |
|
cls_scores[i][img_id].detach() for i in range(num_levels) |
|
] |
|
bbox_cls_pred_list = [ |
|
bbox_preds[i][0][img_id].detach() for i in range(num_levels) |
|
] |
|
bbox_reg_pred_list = [ |
|
bbox_preds[i][1][img_id].detach() for i in range(num_levels) |
|
] |
|
img_shape = img_metas[img_id]['img_shape'] |
|
scale_factor = img_metas[img_id]['scale_factor'] |
|
proposals = self.get_bboxes_single(cls_score_list, |
|
bbox_cls_pred_list, |
|
bbox_reg_pred_list, |
|
mlvl_anchors[img_id], img_shape, |
|
scale_factor, cfg, rescale) |
|
result_list.append(proposals) |
|
return result_list |
|
|
|
def get_bboxes_single(self, |
|
cls_scores, |
|
bbox_cls_preds, |
|
bbox_reg_preds, |
|
mlvl_anchors, |
|
img_shape, |
|
scale_factor, |
|
cfg, |
|
rescale=False): |
|
cfg = self.test_cfg if cfg is None else cfg |
|
mlvl_bboxes = [] |
|
mlvl_scores = [] |
|
mlvl_confids = [] |
|
assert len(cls_scores) == len(bbox_cls_preds) == len( |
|
bbox_reg_preds) == len(mlvl_anchors) |
|
for cls_score, bbox_cls_pred, bbox_reg_pred, anchors in zip( |
|
cls_scores, bbox_cls_preds, bbox_reg_preds, mlvl_anchors): |
|
assert cls_score.size()[-2:] == bbox_cls_pred.size( |
|
)[-2:] == bbox_reg_pred.size()[-2::] |
|
cls_score = cls_score.permute(1, 2, |
|
0).reshape(-1, self.cls_out_channels) |
|
if self.use_sigmoid_cls: |
|
scores = cls_score.sigmoid() |
|
else: |
|
scores = cls_score.softmax(-1) |
|
bbox_cls_pred = bbox_cls_pred.permute(1, 2, 0).reshape( |
|
-1, self.side_num * 4) |
|
bbox_reg_pred = bbox_reg_pred.permute(1, 2, 0).reshape( |
|
-1, self.side_num * 4) |
|
nms_pre = cfg.get('nms_pre', -1) |
|
if nms_pre > 0 and scores.shape[0] > nms_pre: |
|
if self.use_sigmoid_cls: |
|
max_scores, _ = scores.max(dim=1) |
|
else: |
|
max_scores, _ = scores[:, :-1].max(dim=1) |
|
_, topk_inds = max_scores.topk(nms_pre) |
|
anchors = anchors[topk_inds, :] |
|
bbox_cls_pred = bbox_cls_pred[topk_inds, :] |
|
bbox_reg_pred = bbox_reg_pred[topk_inds, :] |
|
scores = scores[topk_inds, :] |
|
bbox_preds = [ |
|
bbox_cls_pred.contiguous(), |
|
bbox_reg_pred.contiguous() |
|
] |
|
bboxes, confids = self.bbox_coder.decode( |
|
anchors.contiguous(), bbox_preds, max_shape=img_shape) |
|
mlvl_bboxes.append(bboxes) |
|
mlvl_scores.append(scores) |
|
mlvl_confids.append(confids) |
|
mlvl_bboxes = torch.cat(mlvl_bboxes) |
|
if rescale: |
|
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) |
|
mlvl_scores = torch.cat(mlvl_scores) |
|
mlvl_confids = torch.cat(mlvl_confids) |
|
if self.use_sigmoid_cls: |
|
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) |
|
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) |
|
det_bboxes, det_labels = multiclass_nms( |
|
mlvl_bboxes, |
|
mlvl_scores, |
|
cfg.score_thr, |
|
cfg.nms, |
|
cfg.max_per_img, |
|
score_factors=mlvl_confids) |
|
return det_bboxes, det_labels |
|
|