|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule, normal_init |
|
from mmcv.ops import DeformConv2d |
|
|
|
from mmdet.core import multi_apply, multiclass_nms |
|
from ..builder import HEADS |
|
from .anchor_free_head import AnchorFreeHead |
|
|
|
INF = 1e8 |
|
|
|
|
|
class FeatureAlign(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
deform_groups=4): |
|
super(FeatureAlign, self).__init__() |
|
offset_channels = kernel_size * kernel_size * 2 |
|
self.conv_offset = nn.Conv2d( |
|
4, deform_groups * offset_channels, 1, bias=False) |
|
self.conv_adaption = DeformConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
padding=(kernel_size - 1) // 2, |
|
deform_groups=deform_groups) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def init_weights(self): |
|
normal_init(self.conv_offset, std=0.1) |
|
normal_init(self.conv_adaption, std=0.01) |
|
|
|
def forward(self, x, shape): |
|
offset = self.conv_offset(shape) |
|
x = self.relu(self.conv_adaption(x, offset)) |
|
return x |
|
|
|
|
|
@HEADS.register_module() |
|
class FoveaHead(AnchorFreeHead): |
|
"""FoveaBox: Beyond Anchor-based Object Detector |
|
https://arxiv.org/abs/1904.03797 |
|
""" |
|
|
|
def __init__(self, |
|
num_classes, |
|
in_channels, |
|
base_edge_list=(16, 32, 64, 128, 256), |
|
scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, |
|
512)), |
|
sigma=0.4, |
|
with_deform=False, |
|
deform_groups=4, |
|
**kwargs): |
|
self.base_edge_list = base_edge_list |
|
self.scale_ranges = scale_ranges |
|
self.sigma = sigma |
|
self.with_deform = with_deform |
|
self.deform_groups = deform_groups |
|
super().__init__(num_classes, in_channels, **kwargs) |
|
|
|
def _init_layers(self): |
|
|
|
super()._init_reg_convs() |
|
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) |
|
|
|
|
|
if not self.with_deform: |
|
super()._init_cls_convs() |
|
self.conv_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
else: |
|
self.cls_convs = nn.ModuleList() |
|
self.cls_convs.append( |
|
ConvModule( |
|
self.feat_channels, (self.feat_channels * 4), |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
bias=self.norm_cfg is None)) |
|
self.cls_convs.append( |
|
ConvModule((self.feat_channels * 4), (self.feat_channels * 4), |
|
1, |
|
stride=1, |
|
padding=0, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
bias=self.norm_cfg is None)) |
|
self.feature_adaption = FeatureAlign( |
|
self.feat_channels, |
|
self.feat_channels, |
|
kernel_size=3, |
|
deform_groups=self.deform_groups) |
|
self.conv_cls = nn.Conv2d( |
|
int(self.feat_channels * 4), |
|
self.cls_out_channels, |
|
3, |
|
padding=1) |
|
|
|
def init_weights(self): |
|
super().init_weights() |
|
if self.with_deform: |
|
self.feature_adaption.init_weights() |
|
|
|
def forward_single(self, x): |
|
cls_feat = x |
|
reg_feat = x |
|
for reg_layer in self.reg_convs: |
|
reg_feat = reg_layer(reg_feat) |
|
bbox_pred = self.conv_reg(reg_feat) |
|
if self.with_deform: |
|
cls_feat = self.feature_adaption(cls_feat, bbox_pred.exp()) |
|
for cls_layer in self.cls_convs: |
|
cls_feat = cls_layer(cls_feat) |
|
cls_score = self.conv_cls(cls_feat) |
|
return cls_score, bbox_pred |
|
|
|
def _get_points_single(self, *args, **kwargs): |
|
y, x = super()._get_points_single(*args, **kwargs) |
|
return y + 0.5, x + 0.5 |
|
|
|
def loss(self, |
|
cls_scores, |
|
bbox_preds, |
|
gt_bbox_list, |
|
gt_label_list, |
|
img_metas, |
|
gt_bboxes_ignore=None): |
|
assert len(cls_scores) == len(bbox_preds) |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
points = self.get_points(featmap_sizes, bbox_preds[0].dtype, |
|
bbox_preds[0].device) |
|
num_imgs = cls_scores[0].size(0) |
|
flatten_cls_scores = [ |
|
cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) |
|
for cls_score in cls_scores |
|
] |
|
flatten_bbox_preds = [ |
|
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) |
|
for bbox_pred in bbox_preds |
|
] |
|
flatten_cls_scores = torch.cat(flatten_cls_scores) |
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds) |
|
flatten_labels, flatten_bbox_targets = self.get_targets( |
|
gt_bbox_list, gt_label_list, featmap_sizes, points) |
|
|
|
|
|
pos_inds = ((flatten_labels >= 0) |
|
& (flatten_labels < self.num_classes)).nonzero().view(-1) |
|
num_pos = len(pos_inds) |
|
|
|
loss_cls = self.loss_cls( |
|
flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) |
|
if num_pos > 0: |
|
pos_bbox_preds = flatten_bbox_preds[pos_inds] |
|
pos_bbox_targets = flatten_bbox_targets[pos_inds] |
|
pos_weights = pos_bbox_targets.new_zeros( |
|
pos_bbox_targets.size()) + 1.0 |
|
loss_bbox = self.loss_bbox( |
|
pos_bbox_preds, |
|
pos_bbox_targets, |
|
pos_weights, |
|
avg_factor=num_pos) |
|
else: |
|
loss_bbox = torch.tensor( |
|
0, |
|
dtype=flatten_bbox_preds.dtype, |
|
device=flatten_bbox_preds.device) |
|
return dict(loss_cls=loss_cls, loss_bbox=loss_bbox) |
|
|
|
def get_targets(self, gt_bbox_list, gt_label_list, featmap_sizes, points): |
|
label_list, bbox_target_list = multi_apply( |
|
self._get_target_single, |
|
gt_bbox_list, |
|
gt_label_list, |
|
featmap_size_list=featmap_sizes, |
|
point_list=points) |
|
flatten_labels = [ |
|
torch.cat([ |
|
labels_level_img.flatten() for labels_level_img in labels_level |
|
]) for labels_level in zip(*label_list) |
|
] |
|
flatten_bbox_targets = [ |
|
torch.cat([ |
|
bbox_targets_level_img.reshape(-1, 4) |
|
for bbox_targets_level_img in bbox_targets_level |
|
]) for bbox_targets_level in zip(*bbox_target_list) |
|
] |
|
flatten_labels = torch.cat(flatten_labels) |
|
flatten_bbox_targets = torch.cat(flatten_bbox_targets) |
|
return flatten_labels, flatten_bbox_targets |
|
|
|
def _get_target_single(self, |
|
gt_bboxes_raw, |
|
gt_labels_raw, |
|
featmap_size_list=None, |
|
point_list=None): |
|
|
|
gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) * |
|
(gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1])) |
|
label_list = [] |
|
bbox_target_list = [] |
|
|
|
for base_len, (lower_bound, upper_bound), stride, featmap_size, \ |
|
(y, x) in zip(self.base_edge_list, self.scale_ranges, |
|
self.strides, featmap_size_list, point_list): |
|
|
|
labels = gt_labels_raw.new_zeros(featmap_size) + self.num_classes |
|
bbox_targets = gt_bboxes_raw.new(featmap_size[0], featmap_size[1], |
|
4) + 1 |
|
|
|
hit_indices = ((gt_areas >= lower_bound) & |
|
(gt_areas <= upper_bound)).nonzero().flatten() |
|
if len(hit_indices) == 0: |
|
label_list.append(labels) |
|
bbox_target_list.append(torch.log(bbox_targets)) |
|
continue |
|
_, hit_index_order = torch.sort(-gt_areas[hit_indices]) |
|
hit_indices = hit_indices[hit_index_order] |
|
gt_bboxes = gt_bboxes_raw[hit_indices, :] / stride |
|
gt_labels = gt_labels_raw[hit_indices] |
|
half_w = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0]) |
|
half_h = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) |
|
|
|
pos_left = torch.ceil( |
|
gt_bboxes[:, 0] + (1 - self.sigma) * half_w - 0.5).long().\ |
|
clamp(0, featmap_size[1] - 1) |
|
pos_right = torch.floor( |
|
gt_bboxes[:, 0] + (1 + self.sigma) * half_w - 0.5).long().\ |
|
clamp(0, featmap_size[1] - 1) |
|
pos_top = torch.ceil( |
|
gt_bboxes[:, 1] + (1 - self.sigma) * half_h - 0.5).long().\ |
|
clamp(0, featmap_size[0] - 1) |
|
pos_down = torch.floor( |
|
gt_bboxes[:, 1] + (1 + self.sigma) * half_h - 0.5).long().\ |
|
clamp(0, featmap_size[0] - 1) |
|
for px1, py1, px2, py2, label, (gt_x1, gt_y1, gt_x2, gt_y2) in \ |
|
zip(pos_left, pos_top, pos_right, pos_down, gt_labels, |
|
gt_bboxes_raw[hit_indices, :]): |
|
labels[py1:py2 + 1, px1:px2 + 1] = label |
|
bbox_targets[py1:py2 + 1, px1:px2 + 1, 0] = \ |
|
(stride * x[py1:py2 + 1, px1:px2 + 1] - gt_x1) / base_len |
|
bbox_targets[py1:py2 + 1, px1:px2 + 1, 1] = \ |
|
(stride * y[py1:py2 + 1, px1:px2 + 1] - gt_y1) / base_len |
|
bbox_targets[py1:py2 + 1, px1:px2 + 1, 2] = \ |
|
(gt_x2 - stride * x[py1:py2 + 1, px1:px2 + 1]) / base_len |
|
bbox_targets[py1:py2 + 1, px1:px2 + 1, 3] = \ |
|
(gt_y2 - stride * y[py1:py2 + 1, px1:px2 + 1]) / base_len |
|
bbox_targets = bbox_targets.clamp(min=1. / 16, max=16.) |
|
label_list.append(labels) |
|
bbox_target_list.append(torch.log(bbox_targets)) |
|
return label_list, bbox_target_list |
|
|
|
def get_bboxes(self, |
|
cls_scores, |
|
bbox_preds, |
|
img_metas, |
|
cfg=None, |
|
rescale=None): |
|
assert len(cls_scores) == len(bbox_preds) |
|
num_levels = len(cls_scores) |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
points = self.get_points( |
|
featmap_sizes, |
|
bbox_preds[0].dtype, |
|
bbox_preds[0].device, |
|
flatten=True) |
|
result_list = [] |
|
for img_id in range(len(img_metas)): |
|
cls_score_list = [ |
|
cls_scores[i][img_id].detach() for i in range(num_levels) |
|
] |
|
bbox_pred_list = [ |
|
bbox_preds[i][img_id].detach() for i in range(num_levels) |
|
] |
|
img_shape = img_metas[img_id]['img_shape'] |
|
scale_factor = img_metas[img_id]['scale_factor'] |
|
det_bboxes = self._get_bboxes_single(cls_score_list, |
|
bbox_pred_list, featmap_sizes, |
|
points, img_shape, |
|
scale_factor, cfg, rescale) |
|
result_list.append(det_bboxes) |
|
return result_list |
|
|
|
def _get_bboxes_single(self, |
|
cls_scores, |
|
bbox_preds, |
|
featmap_sizes, |
|
point_list, |
|
img_shape, |
|
scale_factor, |
|
cfg, |
|
rescale=False): |
|
cfg = self.test_cfg if cfg is None else cfg |
|
assert len(cls_scores) == len(bbox_preds) == len(point_list) |
|
det_bboxes = [] |
|
det_scores = [] |
|
for cls_score, bbox_pred, featmap_size, stride, base_len, (y, x) \ |
|
in zip(cls_scores, bbox_preds, featmap_sizes, self.strides, |
|
self.base_edge_list, point_list): |
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] |
|
scores = cls_score.permute(1, 2, 0).reshape( |
|
-1, self.cls_out_channels).sigmoid() |
|
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).exp() |
|
nms_pre = cfg.get('nms_pre', -1) |
|
if (nms_pre > 0) and (scores.shape[0] > nms_pre): |
|
max_scores, _ = scores.max(dim=1) |
|
_, topk_inds = max_scores.topk(nms_pre) |
|
bbox_pred = bbox_pred[topk_inds, :] |
|
scores = scores[topk_inds, :] |
|
y = y[topk_inds] |
|
x = x[topk_inds] |
|
x1 = (stride * x - base_len * bbox_pred[:, 0]).\ |
|
clamp(min=0, max=img_shape[1] - 1) |
|
y1 = (stride * y - base_len * bbox_pred[:, 1]).\ |
|
clamp(min=0, max=img_shape[0] - 1) |
|
x2 = (stride * x + base_len * bbox_pred[:, 2]).\ |
|
clamp(min=0, max=img_shape[1] - 1) |
|
y2 = (stride * y + base_len * bbox_pred[:, 3]).\ |
|
clamp(min=0, max=img_shape[0] - 1) |
|
bboxes = torch.stack([x1, y1, x2, y2], -1) |
|
det_bboxes.append(bboxes) |
|
det_scores.append(scores) |
|
det_bboxes = torch.cat(det_bboxes) |
|
if rescale: |
|
det_bboxes /= det_bboxes.new_tensor(scale_factor) |
|
det_scores = torch.cat(det_scores) |
|
padding = det_scores.new_zeros(det_scores.shape[0], 1) |
|
|
|
|
|
det_scores = torch.cat([det_scores, padding], dim=1) |
|
det_bboxes, det_labels = multiclass_nms(det_bboxes, det_scores, |
|
cfg.score_thr, cfg.nms, |
|
cfg.max_per_img) |
|
return det_bboxes, det_labels |
|
|