|
_base_ = [ |
|
'../_base_/models/mask_rcnn_r50_fpn.py', |
|
'../_base_/datasets/coco_instance.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
model = dict( |
|
pretrained='open-mmlab://regnetx_3.2gf', |
|
backbone=dict( |
|
_delete_=True, |
|
type='RegNet', |
|
arch='regnetx_3.2gf', |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch'), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[96, 192, 432, 1008], |
|
out_channels=256, |
|
num_outs=5)) |
|
img_norm_cfg = dict( |
|
|
|
mean=[103.53, 116.28, 123.675], |
|
std=[57.375, 57.12, 58.395], |
|
to_rgb=False) |
|
train_pipeline = [ |
|
|
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005) |
|
|