Swin-Transformer-Object-Detection
/
configs
/regnet
/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
_base_ = [ | |
'../_base_/models/faster_rcnn_r50_fpn.py', | |
'../_base_/datasets/coco_detection.py', | |
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' | |
] | |
model = dict( | |
pretrained='open-mmlab://regnetx_3.2gf', | |
backbone=dict( | |
_delete_=True, | |
type='RegNet', | |
arch='regnetx_3.2gf', | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch'), | |
neck=dict( | |
type='FPN', | |
in_channels=[96, 192, 432, 1008], | |
out_channels=256, | |
num_outs=5)) | |
img_norm_cfg = dict( | |
# The mean and std are used in PyCls when training RegNets | |
mean=[103.53, 116.28, 123.675], | |
std=[57.375, 57.12, 58.395], | |
to_rgb=False) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='Resize', | |
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), | |
(1333, 768), (1333, 800)], | |
multiscale_mode='value', | |
keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='DefaultFormatBundle'), | |
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(1333, 800), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='ImageToTensor', keys=['img']), | |
dict(type='Collect', keys=['img']), | |
]) | |
] | |
data = dict( | |
train=dict(pipeline=train_pipeline), | |
val=dict(pipeline=test_pipeline), | |
test=dict(pipeline=test_pipeline)) | |
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005) | |
lr_config = dict(step=[28, 34]) | |
runner = dict(type='EpochBasedRunner', max_epochs=36) | |