|
_base_ = 'ssd300_voc0712.py' |
|
input_size = 512 |
|
model = dict( |
|
backbone=dict(input_size=input_size), |
|
bbox_head=dict( |
|
in_channels=(512, 1024, 512, 256, 256, 256, 256), |
|
anchor_generator=dict( |
|
input_size=input_size, |
|
strides=[8, 16, 32, 64, 128, 256, 512], |
|
basesize_ratio_range=(0.15, 0.9), |
|
ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2])))) |
|
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PhotoMetricDistortion', |
|
brightness_delta=32, |
|
contrast_range=(0.5, 1.5), |
|
saturation_range=(0.5, 1.5), |
|
hue_delta=18), |
|
dict( |
|
type='Expand', |
|
mean=img_norm_cfg['mean'], |
|
to_rgb=img_norm_cfg['to_rgb'], |
|
ratio_range=(1, 4)), |
|
dict( |
|
type='MinIoURandomCrop', |
|
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), |
|
min_crop_size=0.3), |
|
dict(type='Resize', img_scale=(512, 512), keep_ratio=False), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(512, 512), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=False), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
train=dict(dataset=dict(pipeline=train_pipeline)), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|